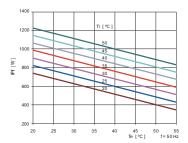
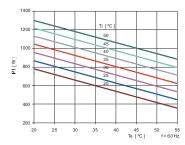

Cooling unit

Mechanical control

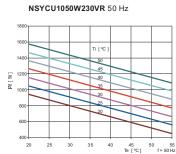
Top-mounting models, ref. NSYCU760W230VR-NSYCU1050W230VR-NSYCU1460W230VR

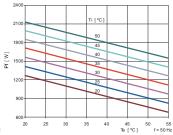



Cut-out template for top mounting without intermediate frame.

E F G H J K M	н	G	F		D	С	В	Α
36 292 80 600 600 340 600	600	80	292	136	40	350	350	108
80 328 90 700 700 400 700	700	90	328	180	45	400	420	118
80 328 90 700 700 400 700	700	90	328	180	45	400	420	118

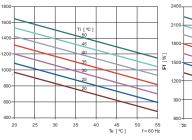
NSYCU760W230VR 50 Hz


NSYCU760W230VR 60 Hz


Curves

[m]

ň


NSYCU1050W230VR 60 Hz

NSYCU1460W230VR 50 Hz

NSYCU1460W230VR 60 Hz

25 30 35 40 45 Te [°C]

'i[⁰C 50 40

50 55 f = 60 Hz

Cooling unit Mechanical control

NSYCU1650W230VR

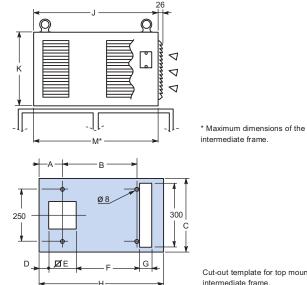
Top-mounting

Cooling units for electrical switchboards

- Respect for the environment by using environmentally friendly gas R134a (HFC).
- Automatic evaporation of condensation water.
- Cooling power from 760 W to 3100 W.

General characteristics

- The temperature setting can be adjusted from +20 to +50 °C.
- They are equipped as standard with an automatically reset pressure gauge and a switching thermostat which, when it detects a value greater than the safe pressure value, stops the compressor and the external fan.
- The internal and external air circuits are independent. A protection rating of IP 54 is guaranteed between the outside and the inside of the enclosure.
- The fan of the internal circuit permanently guarantees prevention against hot spots as well as improved thermal dissipation inside the enclosure.
- The devices are equipped with switches for reporting an alarm.
- System for automatic recovery and evaporation of condensates.
- RAL 7035 colour for the standard offer.
- Units in RAL 7032 as option, please contact us.
- Stainless-steel version and other voltages on demand.


Reference	NSYCU1650W230VR	NSYCU2000W400VR	
Voltage	230 V; 50/60 Hz	3 imes 440 V; 50 Hz / 3 $ imes$ 440 V; 60 Hz	
Cooling power (50/60 Hz) according to EN 14511			
L35-L35	1650/1700 W (5631/5802 Btu/h)	2000/2100 W (6826/7169 Btu/h)	
L35-L50	1300/1400 W (4438/4779 Btu/h)	1600/1700 W (5462/5803 Btu/h)	
Dimensions			
Height) mm	
Width) mm	
Depth	400) mm	
Intensity			
Starting current	16.1/18.5 A	6.8/7.9 A	
Rated current	4.2/4.5 A	2.1/2.5 A	
Power consumption absorbed L35-L35	800/920 W	1000/1100 M	
L35-L35 L35-L50	920/1100 W	1200/1400 W 1400/1700 W	
	920/1100 W	1400/1700 ₩	
Energy efficiency ratio (EER) L35-L35	2.1/2.0	1.7/1.5	
Control type		mostat	
Temperature setting range	+20+50 °C		
Maximum outside temperature		5°C	
Noise level	67 dB	69 dB	
	07 08	09.05	
Air flow of the internal circuit	550/6	00 m³/h	
of the external circuit		80 m ³ /h	
Type of zero-potential alarm		r contact	
Weight of unit	47 kg	60 kg	
Cooling gas type	5	a (1.0 kg)	
IP (IEC 60529)		(
On the internal circuit		54	
On the external circuit		34	
External circuit filter	Y	/es	
Assembly	Or	1 top	
Thermal protection recommended	704	TOA	
(fuse melt curve)	T6A	ТЗА	

8/60

Cooling unit

Mechanical control

Top-mounting model, ref. NSYCU1650W230VR-NSYCU2000W400VR

Cut-out template for top mounting without intermediate frame.

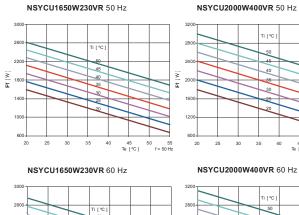
30

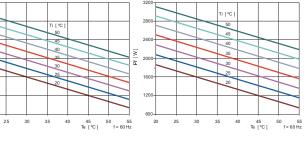
40 45 Te [ºC]

Reference	Α	В	С	D	Е	F	G	н	J	к	м
NSYCU1650W230VR	118	420	400	45	180	328	90	700	700	430	700
NSYCU2000W400VR	118	420	400	45	180	328	90	700	700	430	700

Curves

220


1800


1400 1000

600-

20

Pf [W]

Schneider 8/61

50 55 f = 50 Hz

Cooling unit Mechanical control

NSYCU3100W400VR

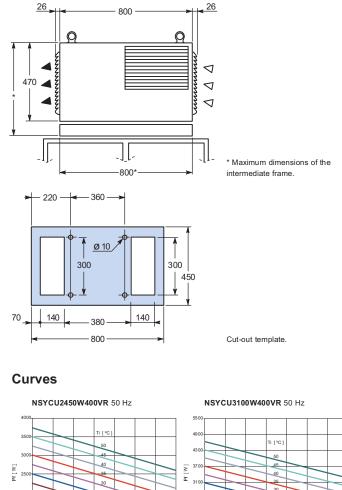
Top-mounting

Cooling units for electrical switchboards

- Respect for the environment by using environmentally friendly gas R134a (HFC).
- Automatic evaporation of condensation water.
- Cooling power from 760 W to 3100 W.

General characteristics

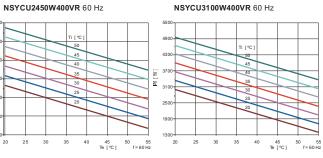
- The temperature setting can be adjusted from +20 to +50 °C.
- They are equipped as standard with an automatically reset pressure gauge and a switching thermostat which, when it detects a value greater than the safe pressure value, stops the compressor and the external fan.
- The internal and external air circuits are independent. A protection rating of IP 54 is guaranteed between the outside and the inside of the enclosure.
- The fan of the internal circuit permanently guarantees prevention against hot spots as well as improved thermal dissipation inside the enclosure.
- The devices are equipped with switches for reporting an alarm.
- System for automatic recovery and evaporation of condensates.
- RAL 7035 colour for the standard offer.
- Units in RAL 7032 as option, please contact us.
- Stainless-steel version and other voltages on demand.


Reference	NSYCU2450W400VR	NSYCU3100W400VR
Voltage	3 imes 440 V; 50 Hz / $3 imes$ 440 V; 60 Hz	3 imes 440 V; 50 Hz / $3 imes$ 440 V; 60 Hz
Cooling power (50/60 Hz) according to EN 14511		
L35-L35	2450/2600 W (8362/8876 Btu/h)	3100/3300 W (10580/11266 Btu/h)
L35-L50	2000/2100 W (6828/7169 Btu/h)	2500/2600 W (8532/8876 Btu/h)
Dimensions		
Height		mm
Width		mm
Depth	450	mm
Intensity		
Starting current	8.4/10.1 A	9.6/11.3 A
Rated current	2.6/3.2 A	3.0/3.5 A
Power consumption absorbed		
L35-L35	1500/1800 W	1700/2000 W
L35-L50	1800/2100 W	2000/2300 W
Energy efficiency ratio (EER)		
L35-L35	1.6/1.5	1.8/1.7
Control type	Therr	nostat
Temperature setting range	+20	+50 °C
Maximum outside temperature	55	5°C
Noise level	69	dB
Air flow		
of the internal circuit	750/82	20 m³/h
of the external circuit	1200/13	310 m³/h
Type of zero-potential alarm	Inverter	contact
Weight of unit	65	5 kg
Cooling gas type	R134a (1.5 kg)	R134a (1.7 kg)
IP (IEC 60529)		
On the internal circuit	IP	54
On the external circuit	IP	34
External circuit filter	Yi	es
Assembly	On	top
Thermal protection recommended (fuse melt curve)	Ti	4A

8/62

Cooling unit

Mechanical control


Top-mounting model, ref. NSYCU2450W400VR-NSYCU3100W400VR

NSYCU2450W400VR 60 Hz

Pf [W]

> Schneider 8/63

Te[°C]

50 55 f = 50 Hz

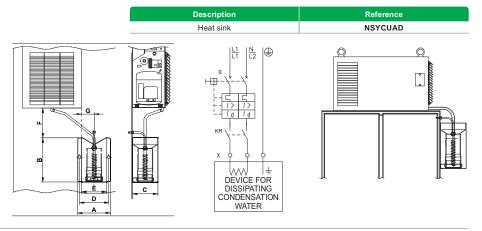
Cooling unit Accessories

Intermediate frame

• Frame allowing the top-mounting unit ref. NSYCU760W230VR mounted on enclosures with a width of 600 and a depth of 400 mm.

Description	Reference
Intermediate frame	NSYCUAI

Spare filter


- Filter with a density of 32 kg/m² and a thickness of 13 mm, for all the
- To be ordered in multiples of 24 filters.

Description	Reference
Spare filter	NSYCEAF

Device for dissipating condensation water (external installation)

- Device for dissipating condensation water (external installation) allowing the evacuation of condensation water from the internal battery (evaporator).
- Supplied with stainless-steel support.
- Power supply:

	Voltage	Starting current	Thermal protection recommended	Evaporation capacity	Resistance type
Operating	230 V~	2.9 A	T 3 A	200 cl/h	PTC
voltage ±10%	115 V~	5.8 A	T 6 A		

8/64

Selection tools

> www.schneider-electric.com

Our international site allows you to access all the Schneider Electric products in just two clicks with direct links to:

- A complete library of technical documents,
- catalogues, FAQs brochures, etc.
- Certificates.
- 2D & 3D drawings.
- Selection Guides from the e-catalogue.
- Product discovery sites.

You may also find illustrated overviews, news to which you can subscribe, a list of country contacts and more useful information.

Our software suite

>Spacial.pro

Spacial.pro allows you to make switchboard proposals based on the standard Spacial offer. A full project with several sets of switchboards is quoted in minutes, with automatic creation of the Bill of Material and 2D drawings for front/side views.

ProClima

>Spacial.ref

Thalassa.ref

Calculate the right choice for your thermal management requirements, according to the environment and the electrical/electronic devices installed inside the enclosure.

These digital rules allow you to select the best components from the current extensive product range without the risk of any mistakes, since product and accessory selection take place automatically, saving you time and money.

NSYCUE1400W230L

Cooling unit Electronic control

Side-mounting

General characteristics

- Main components: a high-temperature compressor, two fans installed on a removable support, two exchange cassettes, an environmentally friendly refrigerant fluid HFC R134a, an electronic controller and a device for evaporating condensates (treated against corrosion) for side-mounting and top-mounting models.
- The temperature setting can be adjusted from +20 to +50 °C (pre-set and recommended temperature: 35 °C).
- The internal and external air circuits are independent. A protection rating of IP 54 is guaranteed between the outside and the inside of the enclosure.
- The fan of the internal circuit permanently guarantees prevention against hot spots as well as improved thermal dissipation inside the enclosure. Electronic control by microprocessor allows:
- Setting temperature adjustment.
- Door switch management.
- Respect for the following operating parameters: Minimum operating time of the compressor.
 Minimum stand-by time of the compressor.
- Switching on the compressor with setting temperature +1 °C.
- Switching off the compressor with setting temperature -5 °C.
- Alarm management.
- Alarm reset by "confirmation" (manual reset).
- RAL 7035 colour for the standard offer.
- Units in RAL 7032 as option, please contact us.
- Stainless-steel version and other voltages on demand.

Conditions of use

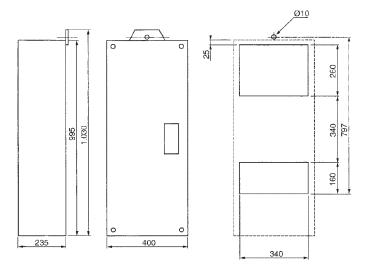
- They can be used with ambient temperatures ranging from +20 to +50 °C.
- The optional filter is required for installation in the following environments: intensive welding, hot forging, textile fibres, powdery chemicals, rubber processing and other harsh environments.
- The air conditioner is equipped with two handles making it easier to transport.
- The air conditioner is equipped with a quick-fixing device. A simple
- screw-nut-cage assembly allows the device to be locked from the outside.
- The electrical connection is by plug-in connectors, included with the unit.
- Do not obstruct, even partially, the external air suction and backflow orifices.
- The device must be installed more than 30 cm from the walls and more than 10 cm from the floor.

Reference	NSYCUE1100W230L	NSYCUE1400W230L	NSYCUE1400W400L	NSYCUE1800W400L
Voltage	230 V; 5	50/60 Hz	3 imes 400 V; 50 Hz .	/ 3 $ imes$ 440 V; 60 Hz
Cooling power (50/60 Hz) according to EN 14511 L35-L35 L35-L50	1100/1200 W (3755/4097 Btu/h) 880/930 W (3004/3175 Btu/h)	1400/1500 W (4780/5121 Btu/h) 1200/1300 W (4097/4438 Btu/h)	1400/1500 W (4780/5121 Btu/h) 1200/1300 W (4097/4438 Btu/h)	1800/1900 W (6145/6485 Btu/h) 1400/1500 W (4780/5121 Btu/h)
Dimensions Height Width Depth) mm mm mm	· · · · · · · · · · · · · · · · · · ·
Intensity Starting current Rated current	12.1/13.9 A 3.2/3.7 A	18.1/22.2 A 4.8/5.8 A	3.7/4.3 A 1.2/1.4 A	5.3/6.3 A 1.8/2.1 A
Power cunsumption absorbed L35-L35 L35-L50	600/690 W 690/790 W	900/1,100 W 1100/1300 W	700/810 W 810/930 W	1000/1200 W 1200/1400 W
Energy efficiency ratio (EER) L35-L35	1.8/1.7	1.6/1.4	2.0/1.9	1.8/1.7
Control type		Electronic	controller	
Temperature setting range		+20	+50 °C	
Maximum outside temperature		55	°C	
Noise level	62 dB (A)	64 dB (A)	66 dB (A)	69 dB (A)
Air flow of the internal circuit of the external circuit	575/600 m³/h 860/900 m³/h	860/900 m³/h 860/900 m³/h	860/900 m³/h 860/900 m³/h	885/900 m³/h 1050/1160 m³/h
Type of zero-potential alarm		Inverter	contact	·
Weight of unit	45 kg	46 kg	47 kg	50 kg
Cooling gas type	R134a (0.85 kg)	R134a (0.85 kg)	R134a (0.85 kg)	R134a (0.85 kg)
IP (IEC 60529) On the internal circuit On the external circuit	54 34			
External circuit filter		Op	tion	
Assembly		Si	de	
Thermal protection recommended (fuse melt curve)	T6A	T8A	T2A	ТЗА

NSYCUE1400W230R

Top-mounting

General characteristics


- Main components: a high-temperature compressor, two fans installed on a removable support, two exchange cassettes, an environmentally friendly refrigerant fluid HFC R134a, an electronic controller and a device for evaporating condensates (treated against corrosion) for side-mounting and top-mounting models.
- The temperature setting can be adjusted from +20 to +50 °C (pre-set and recommended temperature: 35 °C).
- The internal and external air circuits are independent. A protection rating of IP 54 is guaranteed between the outside and the inside of the enclosure on which the air conditioner is installed.
- The fan of the internal circuit permanently guarantees prevention against hot spots as well as improved thermal dissipation inside the enclosure. Electronic control by microprocessor allows:
- Setting temperature adjustment.
- Door switch management.
- Respect for the following operating parameters: Minimum operating time of the compressor.
- Minimum operating time of the compressor. Minimum stand-by time of the compressor.
- Switching on the compressor with setting temperature +1 °C.
- Switching off the compressor with setting temperature -5 °C.
- Alarm management.
- Alarm reset by "confirmation" (manual reset).
- RAL 7035 colour for the standard offer.
- Units in RAL 7032 as option, please contact us.
- Stainless-steel version and other voltages on demand.

Conditions of use

- They can be used with ambient temperatures ranging from +20 to +55 °C.
- The optional filter is required for installation in the following environments: intensive welding, hot forging, textile fibres, powdery chemicals, rubber processing and other harsh environments.
- The air conditioner is equipped with two handles making it easier to transport.
- The air conditioner is equipped with a quick-fixing device. A simple screw-nutcage assembly allows the device to be locked from the outside.
- The electrical connection is by plug-in connectors, included with the unit.
- Do not obstruct, even partially, the external air suction and backflow orifices.
- The device must be installed more than 30 cm from the walls and more than 10 cm from the floor.

Reference	NSYCUE1400W230R	NSYCUE1800W400R	
Voltage	230 V; 50/60 Hz	3 imes 400 V; 50 Hz / $3 imes$ 440 V; 60 Hz	
Cooling power (50/60 Hz) according to EN 14511			
L35-L35	1400/1500 W (4780/5121 Btu/h)	1800/1900 W (6145/6485 Btu/h)	
L35-L50	1200/1300 W (4097/4438 Btu/h)	1400/1500 W (4780/5121 Btu/h)	
Dimensions			
Height		5 mm	
Width		i0 mm	
Depth	41	2 mm	
Intensity			
Starting current	18.1/22.2 A	5.3/6.3 A	
Rated current	4.8/5.8 A	1.8/2.1 A	
Power consumption absorbed			
L35-L35	900/1,100 W	1000/1200 W	
L35-L50	1100/1300 W	1200/1400 W	
Energy efficiency ratio (EER)			
L35-L35	1.6/1.4	1.8/1.7	
Control type	Electronic controller		
Temperature setting range		+50 °C	
Maximum outside temperature	5	5 °C	
Noise level	64 dB (A)	69 dB (A)	
Air flow			
of the internal circuit	860/900 m ³ /h	885/900 m ³ /h	
of the external circuit	860/900 m³/h	1050/1160 m ³ /h	
Type of zero-potential alarm	Inverte	er contact	
Weight of unit	48 kg	50 kg	
Cooling gas type	R134a (0.95 kg)	R134a (0.95 kg)	
IP (IEC 60529)			
On the internal circuit		54	
On the external circuit		34	
External circuit filter	C	Option	
Assembly	0	n top	
Thermal protection recommended	T8A	ТЗА	
(fuse melt curve)	10/1	13A	

Cut-out template for side mounting

Curves

20 25 30 35 40

Pf [W]

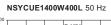
30 35

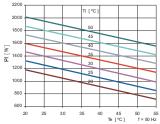
NSYCUE1400W230L 60 Hz

ті[°С]

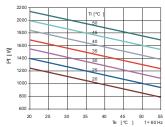
_45

Pf [W]

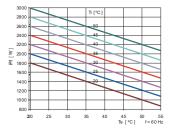

NSYCUE1400W230L 50 Hz


Ti [°C

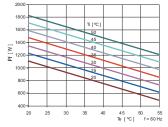
40 45 Te[°C]


50 55 f = 50 Hz

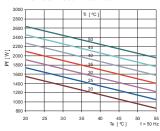
45 50 55 Te [°C] f=60 Hz



NSYCUE1400W400L 60 Hz



NSYCUE1800W400L 60 Hz

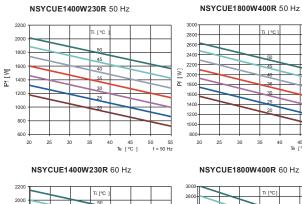


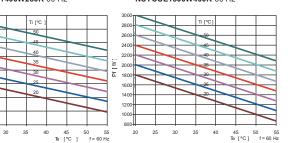
NSYCUE1100W230L 50 Hz Ti[°C Pf [W] 40 45 50 55 Te [°C] f=50 Hz

NSYCUE1100W230L 60 Hz

8/70

Cooling unit


Electronic control


Cut-out template for top mounting

Curves

Pf [W

O°1 iT

Te [°C]

50 55 f = 50 Hz

Cooling unit Accessories

NSYCUART

NSYCUALF

8

.

Filter device

- Kit for additional filter required to protect the side-mounting or top-mounting units in a harsh environment.
 Filter clogging detection kit.
 Spare filter (density 32 kg/m³, thickness 13 mm).
 Kit for quick cleaning of the exchanger cassette to guarantee a good thermal exchange (contains a tray, and train pine and a bottle of grease remover).

- exchange (contains a tray, an drain pipe and a bottle of grease remover).

Pack.	Description	Mounting model	Reference
1	Additional filter kit	Side	NSYCUALT
1	Additional filter kit	Тор	NSYCUART
1	Flush-mounting kit	Side and top	NSYCUAE
5	Spare filter	Side	NSYCUALF
6	Spare filter	Тор	NSYCUARF
1	Cleaning kit	Side	NSYCUALN

Cut-out side panels

Set of two Spacial panels (one solid panel and one pre-cut panel).
Allows instant installation of side-mounting cooling units.
RAL 7035 grey paint.

For Spacial SF wall-mou	Panel	
Height	Depth	reference
1800	600	NSY2SPC186
1800	800	NSY2SPC188
2000	600	NSY2SPC206
2000	800	NSY2SPC208

Only 17 references for 66 combinations

NSYCUB1100W230S

Modular version: 1bloc+1cover

Cooling unit SLIM electronic control

SLIM

- Range of cooling powers from 1100 W to 2700 W.
- 3 installation options: surface, partial flush and flush.
- Versions in RAL 7035 and stainless steel.
- \bullet Electronic thermostat with control option (precision of ±1 °C). Option of installing a display as an accessory.
- Minimal depth of 162 mm in every model.
- Internal IP 55 (enclosure side) maintains the IP of the enclosure up to IP 55.
- The unit is controlled by 3 commands:
- Thermostat value.
- Signal of an anomaly (sudden disconnection, incorrect phase installation, filter blocked with dirt, high compressor temperature, high enclosure temperature). - Door open switch signal.
- A minimum height of 1800 mm and width of 800 mm (door) or 600 mm (side panel) is required to install a SLIM cooling unit in a Spacial enclosure.

General characteristics

- Desired internal temperature adjustable from +20 to +50 °C.
- Maximum ambient temperature: +55 °C.
- All the units have, in standard version, a pressure gauge with automatic reset. If the high pressure exceeds the safe value (in the high-pressure circuit) the pressure gauge acts by cutting off the power supply to the compressor and the external fan.
- External and internal air circuits separated with IP 55. The fan of the internal circuit operates permanently, preventing the appearance of hot spots in the installation.
- Equipped with alarm relay activated by the pressostat in the high-pressure circuit.
- Respect for the environment using environmentally friendly gas R134a (HFC).

	NSYCUB1100W230S
Dimensions (mm)	
Height	1580
Width (according to installation type)	460 (surface) or 495 (partial flush or flush)
Depth	162
Control type	electronic with control without display (display optional)
Unit control	thermostat+alarm+door closed
Temperature setting range	+20+50 °C
Maximum outside temperature	+55 °C
Type of zero-potential alarm	Inverter contact
Cooling gas type	R134a
IP (IEC 60529)	
On the internal circuit	55
On the external circuit	34
External circuit filter	No (please consult us for aggressive environments)
Mounting model	
(the correct cover needs to be ordered)	surface, partial flush or flush
Available cover versions	RAL 7035 and stainless steel
Available cover versions	(please consult us for RAL 7032)
Certifications / marking	UL in process and CE

Modular version: Always order one SLIM cooling unit reference plus one cover reference.

Reference	NSYCUB1100W230S	NSYCUB1100W400S	NSYCUB1100W115S
	1100 W	1100 W	1100 W
Voltage	230 V 50/60 Hz	3 imes 400 V 50 Hz/3 $ imes$ 460V 60 Hz	115 V 50/60 Hz
Power according to EN14511			
L35-35	1100 W/1200 W (3754/4095 Btu/h)	1100 W/1200 W (3754/4095 Btu/h)	1100 W/1200 W (3754/4095 Btu/h)
L35-L50	850 W/900 W (2900/3071 Btu/h)	850 W/900 W (2900/3071 Btu/h)	850 W/900 W (2900/3071 Btu/h)
Intensity			
Starting current	11/13.5 A	8.5/10.5 A	22/27A
Rated current	2.9/3.5 A	2.2/2.3 A	5.8/7 A
Power consumption absorbed			
L35-L35	600/710 W	0.87/0.92 KW	0.6/0.71 KW
L50-L35	710/850 W	0.99/1.1 KW	0.71/0.85 KW
Energy efficiency ratio (EER)			
L35-L35	1.8/1.7	1.3/1.3	1.8/1.7
Noise level	67 dB (A)	67 dB (A)	67 dB (A)
Air flow			
of the internal circuit	570/620 m ³ /h	570/620 m ³ /h	570/620 m ³ /h
of the external circuit	860/900 m ³ /h	860/900 m ³ /h	860/900 m ³ /h
Weight of unit	46 kg	42 kg	46 kg
Thermal protection recommended			
(fuse melt curve)	T4A	T6A	T8A

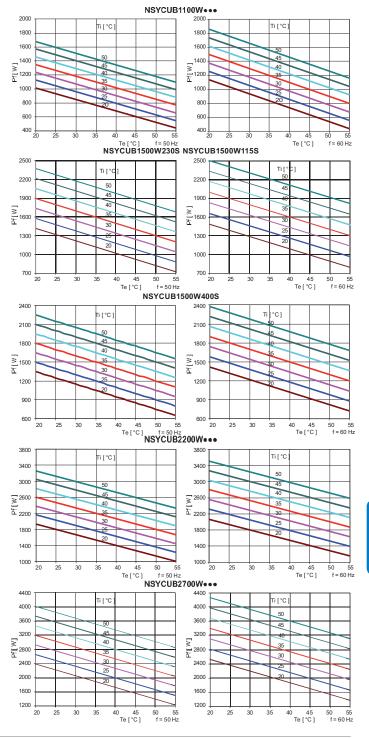
Reference	NSYCUB1500W230S	NSYCUB1500W400S	NSYCUB1500W115S	
	1500 W	1500 W	1500 W	
Voltage	230 V 50/60 Hz	3 imes 400 V 50Hz/3 $ imes 460$ V 60Hz	115 V 50/60 Hz	
Power according to EN14511				
L35-35	1600/1700 W (5459/5800 Btu/h)	1500/1600 W (5118/5459 Btu/h)	1600/1700 W (5459/5800 Btu/h)	
L35-L50	1300/1400 W (4436/4777 Btu/h)	1200/1300 W (4094/4435 Btu/h)	1300/1400 W (4436/4777 Btu/h)	
Intensity				
Starting current	16.7/19.2 A	7.2/9.0 A	33.4/38.4 A	
Rated current	4.4/5.1 A	2.4/3.0 A	8.8/10.2 A	
Power consumption absorbed				
L35-L35	830/950 W	1,300/1,500 W	0.83/0.95 KW	
L50-L35	950/1100 W	1500/1 800 W	0.95/1.1 KW	
Energy efficiency ratio (EER)				
L35-L35	1.9/1.8	1.2/1.1	1.9/1.8	
Noise level	69 dB (A)	67 dB (A)	69 dB (A)	
Air flow				
of the internal circuit	860/900 m ³ /h	860/900 m ³ /h	885/990 m ³ /h	
of the external circuit	885/990 m ³ /h	885/990 m³/h	886/990 m ³ /h	
Weight of unit	49 kg	50 kg	49 kg	
Thermal protection recommended				
(fuse melt curve)	T6A	T4A	T4A	

SLIM covers							
Surface-mounting Partial flush-mounting Flush-mounting							
RAL 7035	NSYCUCL	NSYCUCH	NSYCUCF				
Stainless-steel	NSYCUCLX	NSYCUCHX	NSYCUCFX				

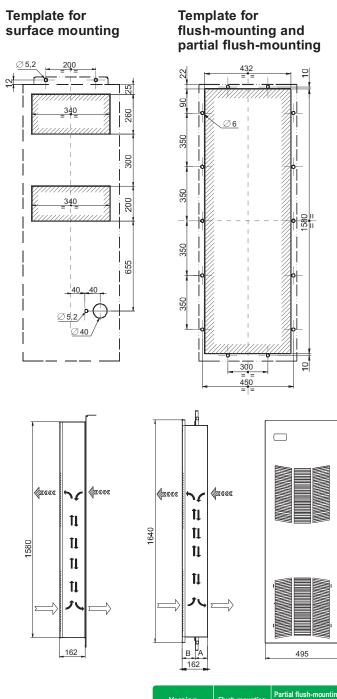
8

Modular version: Always order one SLIM cooling unit reference plus one cover reference.

Reference	NSYCUB2200W230S	NSYCUB2200W400S	NSYCUB2200W115S
	2200 W	2200 W	2200 W
Voltage	230 V 50/60 Hz	3 imes 400 V 50 Hz/3 $ imes$ 460 V 60 Hz	115 V 50/60 Hz
Power according to EN14511			
L35-35	2200 W/2400 W (7507/8189 Btu/h)	2200 W/2400 W (7507/8189 Btu/h)	2200 W/2400 W (7507/8189 Btu/h)
L35-L50	1800 W/2000 W (6142/6824 Btu/h)	1800 W/2000 W (6142/6824 Btu/h)	1800 W/2000 W (6142/6824 Btu/h)
Intensity			
Starting current	22.2/26.2 A	7.9/9.5 A	44.4/52.4A
Rated current	5.8/6.9 A	2.6/3.2 A	11.6/13.8 A
Power consumption absorbed			
L35-L35	1100/1300 W	1500/1800 W	1.1/1.3 KW
L50-L35	1300/1500 W	1800/2100 W	1.3/1.5 KW
Energy efficiency ratio (EER)			
L35-L35	2/1.8	1.5/1.3	2/1.8
Noise level	67 dB (A)	69 dB (A)	67 dB (A)
Air flow			
of the internal circuit	860/900 m ³ /h	885/990 m ³ /h	885/990 m ³ /h
of the external circuit	885/990 m ³ /h	885/990 m ³ /h	886/990 m³/h
Weight of unit	50 kg	54 kg	50 kg
Thermal protection recommended			
(fuse melt curve)	T8A	T4A	T16A


Reference	NSYCUB2700W230S	NSYCUB2700W400S
	2700 W	2700 W
Voltage	230 V 50/60 Hz	3 imes 400 V 50Hz/3 $ imes$ 460V 60Hz
Power according to EN14511		
L35-35	2700 W/2900 W (9218/9901 Btu/h)	2700 W/2900 W (9218/9901 Btu/h)
L35-L50	2200 W/2400 W (7511/8194 Btu/h)	2200 W/2400 W (7511/8194 Btu/h)
Intensity		
Starting current	24.8/28.2 A	9/10.6 A
Rated current	6.4/6.7 A	3/3.5 A
Power consumption absorbed		
L35-L35	1200/1400 W	1700/2000 W
L50-L35	1400/1700 W	2000/2300 W
Energy efficiency ratio (EER)		
L35-L35	2.3/2.1	1.6/1.5
Noise level	69 dB (A)	69 dB (A)
Air flow		
of the internal circuit	1050/1160 m ³ /h	1050/1160 m ³ /h
of the external circuit	1200/1340 m ³ /h	1200/1340 m ³ /h
Weight of unit	57 kg	60 kg
Thermal protection recommended		
(fuse melt curve)	T8A	T4A

SLIM covers							
Surface-mounting Partial flush-mounting Flush-mounting							
RAL 7035	NSYCUCL	NSYCUCH	NSYCUCF				
Stainless-steel	NSYCUCLX	NSYCUCHX	NSYCUCFX				



Modular version: Always order one SLIM cooling unit reference plus one cover reference.

Curves

Schneider 8/77

Version	Flush-mounting	Partial flush-mounting and surface-mounting	
A = inside the enclosure	141 mm	81 mm	
B = outside the enclosure	21 mm	81 mm	

Cooling unit SLIM accessories

Device for dissipating condensation water (internal installation)

• Device for dissipating condensation water (internal installation) allowing the evacuation of condensation water from the internal battery (evaporator).

	Voltage	Starting current	Thermal protection recommended	Evaporation capacity	Resistance type	
Operating	230 V~	2.9 A	T 3 A	200 cl/h	PTC	
voltage ±10%	115 V~	5.8 A	T 6 A	200 Ci/II	FIC	

Description	Reference
Heat sink	NSYCUASD

Electronic display

1

Enables control of the thermostat and displays the temperature inside the enclosure. The display is supplied with a connection cable and a metal plate for inserting the display in the cover of the cooling unit. No prior programming is required.

Description	Reference		
Display	NSYCUAY		

Insulated resistance heaters Introduction

The resistance heaters prevent the formation of condensation and guarantee the ideal temperature for the correct operation of the electronic components in the enclosure.

Large range of power levels

- 2 versions: by natural convection and with fan.
 AC or DC power supply.
 7 power levels, from 10 W to 550 W.

8

Innovating design

Covered with plastic to prevent direct contact with the aluminium radiator.

8/80

Schneider

Easy installation and connection

- Reduced dimensions.
- Quick electric connection by terminal board.
 No maintenance required.
- Direct clipping onto a 35-mm DIN rail.

Safety

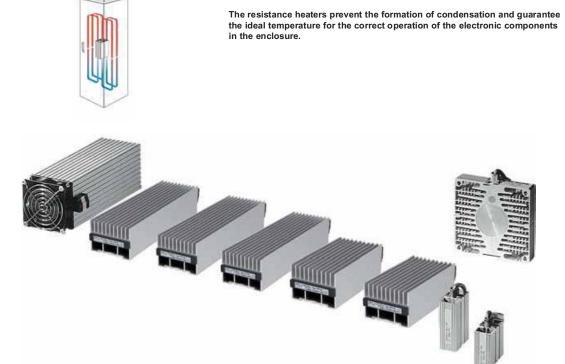
- The protection prevents direct contact with the aluminium radiator.
- Electric protection device with terminal block cover.
- Equipped with a PTC-type heater.
 Surface temperature lower than 70 °C.

High thermal efficiency

- The configuration of the aluminium profile produces a "chimney" effect: high natural convection.
- Low power consumption thanks to self-control of the PTC-type heater.

Models with fan

- The heaters equipped with a fan ensure circulation of the air and a uniform temperature inside the enclosure.
- · High-flow, silent fan.



Certifications

• CE marking. • Range compliant with UL and VDE.

Aluminium resistance heaters Introduction

Resistance heaters equipped with a PTC-type sensor

The resistance heaters for electrical and electronic enclosures are equipped with PTC-type heating devices (Positive Temperature Coefficient). Thanks to these heaters:

- \bullet The surface temperature stabilises at 75 °C when the ambient temperature is –5 °C.
- Power consumption is reduced.

Improved convection

The design of the profile of the resistance heaters produces a "chimney" effect, leading to increased natural convection and maintaining an even temperature inside the enclosure.

Quick fixing

The resistance heaters are fixed by means of fixing clips to a 35-mm DIN rail.

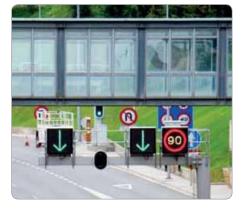
Connection cables

The 10 and 20 W heaters are equipped with a $2\times0.75\times300$ mm power cord.

Connection terminal boards

Heaters with a power of more than 20 $\ensuremath{\mathsf{W}}$ are equipped with a connection terminal board.

Large range of power levels


8 power levels, from 10 W to 400 W.

Models with fan

Models of 250 to 400 W with fan.

Resistance heaters Applications

Conditions of use

- The resistance heaters are controlled by a thermostat or a hygrostat.
- The enclosure must be sealed to prevent the entry of air from the outside.

Dew point temperature

The dew point temperature is the minimum temperature that can be reached before condensation begins to form.

Example:

Ambient temperature = 25 °C. Relative humidity = 50 %.

A temperature of more than 14 °C must be guaranteed inside the enclosure.

				Ambier	nt tempera	ture (°C)			
		20	25	3 0	35	40	45	50	55
(%)	40	6	11	15	19	24	28	33	37
	50	9	14	19	23	28	32	37	41
humidity	60	12	17	21	26	31	36	40	45
nu	70	14	19	24	29	34	38	43	48
	80	16	21	26	31	36	41	46	51
Selative	90	18	23	28	33	38	43	48	53
Sel	100	20	25	30	35	40	45	50	55

Installation tips

- Install several heaters according to the desired power level at the bottom of the enclosure.
- Respect a safety area of at least 10 cm around the device.
- Do not install any bulky devices above the heater, since this could reduce the effect of natural convection.
- Do not install any components that are particularly sensitive to heat directly above a heater.
- If several heaters are used, they must be installed in parallel. Serial installation is not an option.
- The heater must be installed vertically to ensure optimum convection.

Resistance heaters

Selection guide

Insulated resistance heaters

Power (W)	Voltage (V)	Connection type Terminal block	Reference
10	12-24 DC	•	NSYCR10WU1C
10	110-250 AC	•	NSYCR10WU2C
21	12-24 DC	•	NSYCR20WU1C
21	110-250 AC	•	NSYCR20WU2C
55	12-24 DC	•	NSYCR50WU1C
55	110-250 AC	•	NSYCR50WU2C
55	270-420 AC	•	NSYCR50WU3C
100	12-24 DC	•	NSYCR100WU1C
100	110-250 AC	•	NSYCR100WU2C
100	270-420 AC	•	NSYCR100WU3C
147	12-24 DC	•	NSYCR150WU1C
147	110-250 AC	•	NSYCR150WU2C

NSYCR350W230VTVC

Resistance heaters

Selection guide

Insulated resistance heater with fan

	Power (W)	Voltage (V)	Connection type Terminal block	Reference
1	177	230 AC	٠	NSYCR170W230VVC

Thermofans

Power (W)	Voltage (V)	Connection type Terminal block	Reference
350	230 AC	٠	NSYCR350W230VTVC
400/550	120 AC	٠	NSYCRP1W120VTVC
400/550	230 AC	٠	NSYCRP1W230VTVC

Resistance heaters

		Connect	ion type	
Power (W)	Voltage (V)	Terminal block	Cable	Reference
10	12-24 DC		•	NSYCR10WU1
10	110-250 AC		٠	NSYCR10WU2
20	12-24 DC		٠	NSYCR20WU1
20	110-250 AC		٠	NSYCR20WU2
20	270-420 AC	٠		NSYCR20WU3
55	12-24 DC	٠		NSYCR55WU1
55	110-250 AC	٠		NSYCR55WU2
55	270-420 AC	٠		NSYCR55WU3
90	12-24 DC	•		NSYCR100WU1
90	110-250 AC	•		NSYCR100WU2
90	270-420 AC	•		NSYCR100WU3
150	12-24 DC	•		NSYCR150WU1
150	110-250 AC	•		NSYCR150WU2
150	270-420 AC	•		NSYCR150WU3

NSYCRS200W230V

Resistance heaters with fan

Power (W)	Voltage (V)	Connection type Terminal block	Reference
250	115 AC	•	NSYCR250W115VV
250	230 AC	•	NSYCR250W230VV
400	115 AC	•	NSYCR400W115VV
400	230 AC	•	NSYCR400W230VV
200	115 AC	•	NSYCRS200W115V
200	230 AC	•	NSYCRS200W230V

Reference NSYCRAF

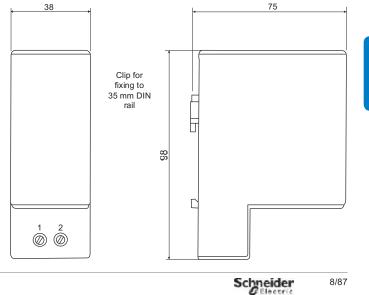
NSYCRAFD

Fixing accessories

Insulated resistance heaters

Insulated resistance heater 10 W and 20 W

General characteristics


- Compact resistance heater preventing the formation of condensation or frost.
 Designed to ensure good natural convection and high thermal efficiency.
- Compact design with reduced dimensions.
- Extruded aluminium body.
 Covered with a UL94 V0 plastic cover, light grey, to avoid direct contact with the heating elements.
- \bullet Surface temperature limited to 70 °C.
- Equipped with a power cable.
- Double insulated.
- Range with PTC technology.
- Quick fixing by clip on a 35-mm DIN rail.
- UL and VDE certifications. CE marking.

Conditions of use

- The heaters must be installed with a thermal controller (see selection table on pages 8/94 and 8/95) to control the temperature or the humidity inside the enclosure.
- The enclosure must be sealed to prevent the entry of air from the outside.
- An electrical protection device must be installed on the supply side of the unit.

On a still a still and	Reference					
Specifications	NSYCR10WU2C	NSYCR10WU1C	NSYCR20WU2C	NSYCR20WU1C		
Power at 0 °C	10	W	20	20 W		
Voltage	110-250 V AC	12-24 V DC	110-250 V AC	12-24 V DC		
Technology		PTC				
Surface temperature		<70 °C, except for the top protection grille				
Electric connection		2 poles, 2.5 mm ²				
Mounting		Quick by clip on a 35-mm DIN rail.				
Cover		UL94 V0 plastic				
Operating position		Vertical				
Operating temperature		-40+70 °C -10+158 °F				
IP protection rating		IP 20 class II (double insulated)				
Certifications		VDE and UL				

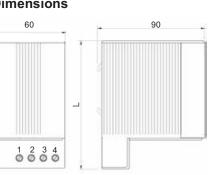
Dimensions

Insulated resistance heaters

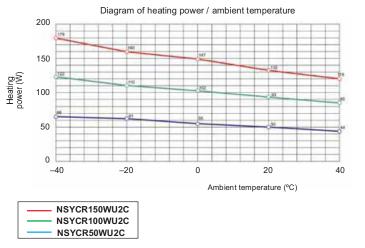
Insulated resistance heater 55 W - 100 W - 147 W

General characteristics

- Compact resistance heater preventing the formation of condensation or frost.
- Designed to ensure good natural convection and high thermal efficiency.
- Compact design with reduced dimensions.
- Extruded aluminium body.
 Covered with a UL94 V0 plastic cover, light grey, to avoid direct contact with the heating elements.
- Surface temperature limited to < 70 °C.
- Equipped with quick-connection terminals: 2.5 mm².
- Double insulated.
- Range with PTC technology.
- Quick fixing by clip on a 35-mm DIN rail.
- UL and VDE certifications. CE marking.


Conditions of use

- The heaters must be installed with a thermal controller (see selection table on pages 8/94 and 8/95) to control the temperature or the humidity inside the enclosure.
- The enclosure must be sealed to prevent the entry of air from the outside.
- An electrical protection device must be installed on the supply side of the unit.


On a sifi sadi sas	Reference							
Specifications	NSYCR50WU2C NSYCR50WU1C NSYCR50WU3C NSYCR100WU2C NSYCR100WU1C NS						NSYCR150WU2C	NSYCR150WU1C
Power at 0 °C		55 W			100 W		147 W	
Voltage	110-250 V AC	12-24 V DC	270-420 V AC	110-250 V AC	12-24 V DC	270-420 V AC	110-250 V AC	12-24 V DC
Technology	PTC							
Surface temperature		<70 °C, except for the top protection grille						
Electric connection	4 poles, 2.5 mm ²							
Mounting		By clip on 35-mm DIN rail						
Cover		UL94 V0 plastic						
Operating position				Ve	rtical			
Operating temperature		-40+70 °C −10+158 °F						
IP protection rating	IP 20 class II (double insulated)							
Certifications	VDE and UL							
Height (H)		110 mm				150 mm		

Dimensions

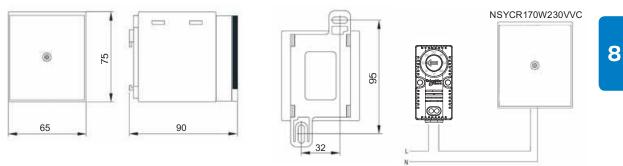
Performance diagram

Insulated ventilated resistance heaters

177 W

General characteristics

- Compact resistance heater preventing the formation of condensation or frost.
 Equipped with an axial fan for uniform heating inside the enclosure.
 Compact design with reduced dimensions.


- Extruded aluminium body.
 Covered with a UL94 V0 plastic cover, light grey, to avoid direct contact with the heating elements (PTC).
- Surface temperature limited to 50 °C.
- Equipped with quick-connection terminals: 2.5 mm².
- Double insulated.
- Range with PTC technology.
- Quick fixing by clip on a 35-mm DIN rail.
- UL and VDE certifications. CE marking.

Conditions of use

- The heaters must be installed with a thermal controller (see selection table on pages 8/94 and 8/95) to control the temperature or the humidity inside the enclosure.
- The enclosure must be sealed to prevent the entry of air from the outside.
- An electrical protection device must be installed on the supply side of the unit.

Specifications	Reference
specifications	NSYCR170W230VVC
Power at 0 °C	177 W
Voltage	230 V AC; 50-60 Hz
Technology	PTC
Surface to management	Max. 50 °C in the enclosure, 100 °C on the top protection grille
Surface temperature	(for an ambient temperature of 20 °C / 68 °F)
Service life	40,000 h at 40 °C
Air flow	13.8 m³/h
Electric connection	2 poles 2.5 mm ²
Mounting	By clip on 35-mm DIN rail
Cover	UL94 V0 plastic
Operating position	Vertical
Operating temperature	_40+70 °C10+158 °F
IP protection rating	IP 20 class II (double insulated)
Certifications	VDE and UL

Dimensions

8/89 Schneider

Aluminium resistance heaters

General characteristics

- Extruded aluminium body.
- Surface temperature limited to 75 °C when the ambient temperature is -5 °C.
 Heaters equipped with a power cable with a length of 500 mm with silicon
- insulation, or with a connection terminal block.

Conditions of use

- The heaters must be installed with a thermal controller (see selection table on pages 8/94 and 8/95) to control the temperature or the humidity inside the enclosure.
- The enclosure must be sealed to prevent the entry of air from the outside.
- An electrical protection device must be installed on the supply side of the unit.

Aluminium resistance heaters Range of resistance heaters from 10 to 400 W, heating the electrical switchboard to prevent the formation of condensation.

		Connection type		
Power (W)	Voltage (V)	Terminal block	Power cord	Reference
10	12-24 DC		٠	NSYCR10WU1
10	110-250 AC		•	NSYCR10WU2
20	12-24 DC		•	NSYCR20WU1
20	110-250 AC		٠	NSYCR20WU2
20	270-420 AC	•		NSYCR20WU3
55	12-24 DC	•		NSYCR55WU1
55	110-250 AC	•		NSYCR55WU2
55	270-420 AC	•		NSYCR55WU3
90	12-24 DC	•		NSYCR100WU1
90	110-250 AC	•		NSYCR100WU2
90	270-420 AC	•		NSYCR100WU3
150	12-24 DC	•		NSYCR150WU1
150	110-250 AC	•		NSYCR150WU2
150	270-420 AC	•		NSYCR150WU3

NSYCRS200W230V

Resistive heaters with fan

- The presence of a fan guarantees perfect uniformity of the temperature inside the electrical switchboard.
- The heaters must be installed with a thermal controller (see selection table on pages 8/94 and 8/95) to control the temperature or the humidity inside the enclosure.

Power (W)	Voltage (V)	Connection type Terminal block	Reference
250	115 AC	•	NSYCR250W115VV
250	230 AC	•	NSYCR250W230VV
400	115 AC	•	NSYCR400W115VV
400	230 AC	•	NSYCR400W230VV
200	115 AC	•	NSYCRS200W115V
200	230 AC	•	NSYCRS200W230V

Aluminium resistance heaters

- Combination of a resistance heater and an axial motor to ensure uniform heating Combination of a resistance neater and of the enclosure.
 Fixing by clip on a DIN rail.
 Thermostat adjustable from 0...+60 °C.
 Visual operation indicator.

NSYCR350W230VTVC

NSYCRP1W230VTVC

Power (W)	Voltage (V)	Connection type Terminal block	Reference
350	230 AC	٠	NSYCR350W230VTVC
400/550	120 AC	٠	NSYCRP1W120VTVC
400/550	230 AC	٠	NSYCRP1W230VTVC

NSYCRAFD

NSYCRAF

Fixing accessories

Description	Reference
Set of 5 studs	NSYCRAF
Set of 5 studs and DIN rail	NSYCRAFD

Adjustable thermostats

- NO (blue button) with normally open contact to control the starting of a fan when the temperature exceeds the displayed maximum value.
- NC (red button) with normally closed contact to control the stopping of a resistance heater when the temperature exceeds the displayed value.
- Large range of temperature control.
- Small dimensions.
- Easily accessible terminals.
- High connection power.
 4 types of fixings (novelty).
- Double-adjustable thermostat
- Double temperature control with a resistance heater and a fan with separate operation.
- Red button: with normally closed contact (NC) for controlling the resistance heaters.
- Blue button: with normally open contact (NO) for controlling the fans.
- A double thermostat with separate adjustments and operations within the same device.
- · Easily accessible terminals.
- Different installation methods.

The new quick-fixing systems:

• On 35-mm DIN rail.

• On Spacial upright.

On cross-rail.

• On mounting plate.

8

8/92

Schneider

Thermal control Overview

Thermostat with NO/NC contact

- NO/NC inverter for controlling the resistance heaters or the fans.
- Switching by means of two NO/NC contacts.
- · Easily accessible terminals.
- High connection power.
- 4 types of quick-fixing systems.
 Versions in °C and °F.

Electronic thermostat with LCD screen

- Three thermostats for different input voltages (9-30 V, 110-127 V, 220-240 V).
- Operating temperature: 0 °C...+50 °C.
- Simple programming.
- Option of installing an external sensor, ref. NSYCCAST for remotely reading the temperature (operating temperature: -30 °C...+80 °C).
- Ventilation and heating function (2 separate relays).
- High switching power.
- Hysteresis: 2 K (+/-0.1 K).
- 7 different operating modes.
- Additional operating mode with 1 external sensor: Reads and compares the internal and external temperatures in order to control the ventilation, heating or the alarm.
- Temperature adjustment range: +5 °C...+50 °C.

7483

Electronic hygrotherms

- Electronic hygrotherms for different input voltages (9-30 V,
- 110-127 V, 220-240 V). • Operating temperature: 0 °C...+ 50 °C.
- Option of installing an external sensor, ref. NSYCCAST for remotely reading the temperature (operating temperature: -30 °C...+80 °C).
- Simple programming.
- 3 different operating modes.
- High switching power.
 T hysteresis: 2 K (+/–0.1 K).
 RH hysteresis: 3%.
- Temperature adjustment range: +5 °C...+50 °C.
- Humidity adjustment range: 20%...80%.

Electronic hygrostat

- Electronic hygrostat for different input voltages (110-240 V).
- Operating temperature: 0 °C...+50 °C.
- Simple programming.
- 2 different operating modes.
- High switching power.
- RH hysteresis: 3%.
- Humidity adjustment range: 20% ... 80% RH.

Thermal control

Selection guide mechanical version

Control temperature

Control a resistance heater or an alarm

Setting range	Display	Contact	Application	Control element	Interrupting capacity (resistive load)	Reference
0+60 °C	°C	о	Heat	Bimetal	30 W DC 120 V AC; 15 A 250 V AC; 10 A	NSYCCOTHC
+32+140 °F	°F					NSYCCOTHCF

Control a fan or an alarm

NO thermostat

Setting range	Display	Contact	Application	Control element	Interrupting capacity (resistive load)	Reference
0+60 °C	°C	NO	Ventilate	Bimetal	30 W DC 120 V AC; 15 A 250 V AC; 10 A	NSYCCOTHO
+32+140 °F	°F					NSYCCOTHOF

Control a resistance heater and a fan

Setting range	Display	Contact	Application	Control element	Interrupting capacity (resistive load)	Reference
0+60 °C	°C	NC	Heat / Ventilate	Bimetal	30 W DC 120 V AC; 15 A 250 V AC; 10 A	NSYCCOTHD
+32+140 °F	°F	+ NO				NSYCCOTHDF

Double thermostat

8

Thermostat with inverse contact

Control a resistance heater or a fan

Setting range	Display	Contact	Application	Control element	Interrupting capacity (resistive load)	Reference
0+60 °C	°C	Inverse	Heat or ventilate	Bimetal	Closing: 30 W DC 250 V AC; 5 A Opening: 30 W DC 250 V AC; 10 A	NSYCCOTHI
+32+140 °F	°F					NSYCCOTHIF

Thermal control

Selection guide electronic version

Control temperature

Control a resistance heater or a fan

	111	•	
310	.221		
	0 .00	•	
	-		
100	and and	50	

Setting range	Display	Power input	Application	Control element	No. of relays	Interrupting capacity (resistive load)	Reference
		9-30 V AC/DC	Heat or				NSYCCOTH30VID
+5 °C+50 °C	°C or °F	110-127 V AC		Electronic	2	8 (5) A 230 V AC 5 A 30 V DC	NSYCCOTH120VID
	220-240 V AC	Vontilate			0//00/ 00	NSYCCOTH230VID	

Electronic thermostat

7 different operating modes. Option of installing one or two external sensors.

Control temperature and relative humidity

Setting range	Display	Power input	Application	Control element	No. of relays	Interrupting capacity (resistive load)	Reference
	+5 °C+50 °C °C or °F	9-30 V AC/DC					NSYCCOHYT30VID
+5 °C+50 °C		110-127 V AC		Electronic	2	8 (5) A 230 V AC 5 A 30 V DC	NSYCCOHYT120VID
				3A 30 V DC	NSYCCOHYT230VID		

Electronic hygrotherm

Electronic hydrostat

Temperature sensor

3 different operating modes. Option of installing an external sensor.

Control relative humidity

Setting range	Display	Power input	Application	Control element	No. of relays	Interrupting capacity (resistive load)	Reference
20%80%	% RH	110-240 V AC	Heat or ventilate	Electronic	2	8 (5) A 230 V AC 5 A 30 V DC	NSYCCOHY230VID

2 different operating modes.

PTC external temperature sensor (double insulation)

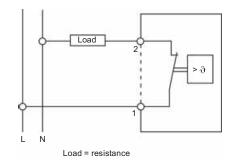
- Length: 3 metres.
- Several types of fixings (on DIN rail, on Spacial SF profile, on VDI cross-rail, on mounting plate).
- Sensor operation or reading range: -30 °C...+80 °C.
- Protection rating: IP 67.

Thermostat installation tips:

The thermostat should be installed at the top of the enclosure (the hottest place). See the various operating modes of each thermostat to choose the one that best meets your needs.

Hygrostat installation tips:

The hygrostat should be installed at the bottom of the enclosure. 60% RH is the optimum value in the enclosure.

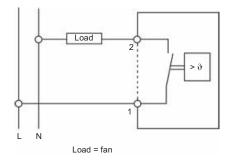


Thermal control Thermostat with NC contact

- Thermostat with NC contact to control the stopping of a resistance heater when the temperature exceeds the displayed value.
- This considerably lengthens the service life of the resistance heaters since they are used less frequently.
- Protection rating: IP 20.
- PC plastic material, self-extinguishing according to standard UL94 V0.
- Temperature adjustment range: 0...+60 °C
 Connection: four 2.5-mm² terminals.
- Multiple fixing systems.
 UL certification.

Display	Max. command I.	Reference
°C	10 A 250 V	NSYCCOTHC
°F	10 A 250 V	NSYCCOTHCF

Technical features			
Sensor element	Bimetal		
Contact	NC, forced rupture		
Contact resistance	< 10 m Ω		
Service life	> 100000 cycles		
	250 V AC; 10 A (resistive load) 120 V AC; 15 A (resistive load)		
Switching capacity	250 V AC/120 V AC 2 A (inductive load $\cos \varphi = 0.6$) 30 W DC		
Connection	Four 2.5-mm ² terminals		
Mounting	By clip on 35-mm DIN rail		
Enclosure	UL94 V0 plastic, light grey		
Dimensions	60 imes 33 imes 43 mm		
Weight	40 g		
Mounting position	Indifferent		
Operating temperature	-20+80 °C (-4+176 °F)		
Protection rating	IP 20		
Hysteresis	7 °K		
Temperature setting range	0+60 °C		

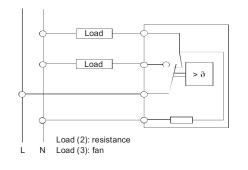

Thermal control Thermostat with NO contact

- Thermostat with NO contact to control the starting up of a fan when the temperature exceeds the displayed maximum value.
- It can control the temperature inside the enclosure by only starting up the fan when necessary, thus increasing the service life of the fan and reducing the clogging of the filter.
- Protection rating: IP 20.
- PC plastic material, self-extinguishing according to standard UL94 V0.
 Temperature setting range: 0...+60 °C
 Connection: four 2.5-mm² terminals.

- Multiple fixing systems.
 UL certification.

Display	Max. command I.	Reference
O°	10 A 250 V	NSYCCOTHO
°F	10 A 250 V	NSYCCOTHOF

Technical features			
Sensor element	Bimetal		
Contact	NO, forced rupture		
Contact resistance	< 10 m Ω		
Service life	> 100000 cycles		
	250 V AC; 10 A (resistive load)		
Curitatian anna situ	120 V AC; 15 A (resistive load)		
Switching capacity	250 V AC/120 V AC 2 A (inductive load $\cos \varphi$ = 0.6)		
	30 W DC		
Connection	Four 2.5 mm ² terminals		
Mounting	Clip on 35-mm DIN rail		
Enclosure	UL94 V0 plastic, light grey		
Dimensions	60 imes 33 imes 43 mm		
Weight	40 g		
Mounting position	Indifferent		
Operating	20 100 00 (4 1470 05)		
temperature	-20+80 °C (-4+176 °F)		
Protection rating	IP 20		
Hysteresis	7 °K		
Temperature adjustment	0+60 °C		

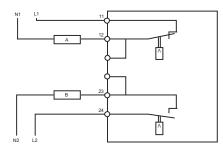


Thermal control Thermostat with NO/NC contact

- Thermostat (contact adapted to control fans, resistance heaters, ventilation drawers, heat exchangers, etc).
- Signals and controls the temperature inside the enclosure.
- Fixing on a DIN rail.
- Protection rating: IP 20.
- PC plastic material, self-extinguishing according to standard UL94 V0.
- Temperature setting range: 0...+60 °C.
 Connection: four 2.5-mm² terminals.

Display	Max. command I.	Reference
°C	(NO) 5 A (NC) 10 A	NSYCCOTHI
°F		NSYCCOTHIF

Technical features			
Sensor element	Bimetal		
Contact	Inverse, forced rupture		
Contact resistance	< 10 m Ω		
Service life	> 100000 cycles		
Switching capacity	250 V AC; 10 A (resistive load)		
Maximum interrupting capacity with direct current	250 V AC 4 A (inductive load cos φ = 0.6) 30 W DC		
Connection	Four 2.5-mm ^₄ terminals		
Mounting	By clip on 35-mm DIN rail		
Enclosure	UL94 V0 plastic, light grey		
Dimensions	$67 \times 50 \times 44$ mm		
Weight	100 g		
Mounting position	Indifferent		
Operating temperature	-20+80 °C (-4+176 °F)		
Protection rating	IP 20		
Hysteresis	7 °K		
Temperature	+5+60 °C		
setting range	10		



Thermal control Double thermostat

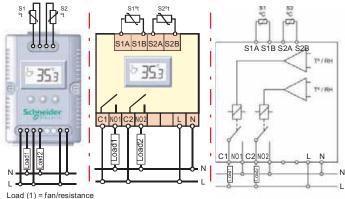
- Double thermostat: two thermostats in a single device with separate adjustment and operation.
- Red button: with normally closed contact (NC) for controlling the resistance heaters.
- Blue button: with normally open contact (NO) for controlling the fans, signalling systems or alarms.
- This thermostat can control the activation of a fan and a heater controlling the PC plastic material, self-extinguishing according to standard UL94 V0.
 Multiple fixing systems.
 UL certification.

Display	Max. command I.	Reference
°C		NSYCCOTHD
°F	(NO) 5 A (NC) 10 A	NSYCCOTHDF

Technical features			
Sensor element	Bimetal		
Contact	NO / NC, forced rupture		
Contact resistance	< 10 m Ω		
Service life	> 100000 cycles		
	250 V AC; 10 A (resistive load) 120 V AC; 15 A (resistive load)		
Switching capacity	250 V AC/120 V AC 2 A (inductive load $\cos \phi = 0.6$) 30 W DC		
Connection	Four 2.5-mm ⁶ terminals		
Mounting	Clip on 35-mm DIN rail		
Enclosure	UL94 V0 plastic, light grey		
Dimensions	60 imes 33 imes 43 mm		
Weight	40 g		
Mounting position	Indifferent		
Operating temperature	-20+80 °C (-4+176 °F)		
Protection rating	IP 20		
Hysteresis	7 °K		
Temperature setting range	0+60 °C		

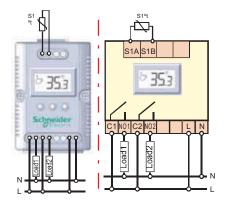
Thermal control Electronic thermostat with LCD screen

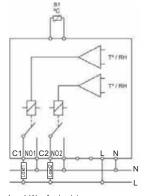
- Electronic temperature controller.
- Input voltages: 9-30 V, 110-127 V and 220-240 V.
- Thermostats with 2 independent switching relays (ventilation / heating function). • Thermostat precision: +/-1.5 °C.
- Option of installing external PTC sensors, ref. NSYCCAST, for remote reading (L = 3 m).
- PC plastic material, self-extinguishing according to standard UL94 V0.
- Option of displaying degrees Celsius °C or Fahrenheit °F in the same thermostat.


Display	Voltage	Type of current	Max. command intensity	Reference
°C or °F	9-30 V	AC DC	8 (5) A 230 V AC /	NSYCCOTH30VID
	110-127 V	4.0	5 A 30 V DC	NSYCCOTH120VID
	220-240 V	AC	5 A 30 V DC	NSYCCOTH230VID

Technical features		
0 °C+50 °C		
+5 °C+50 °C		
Programmed 2 °K		
Internal temperature sensor		
2×2.5 mm ² (input voltage) + 2 relays (2 \times 2.5 mm ² +		
$2 \times 2.5 \text{ mm}^2$)		
Free with zero potential		
4 different methods: by DIN rail, Spacial SF profile, on VDI		
cross-rail or on mounting plate		
UL94-V0 plastic, light grey		
UL/UR		

7 different operating modes in the same thermostat


- Ventilation (the addition of an external sensor inhibits the inner sensor and the reading is 1
- that of the external sensor) (activate 1st relay)
- 2 Heating (activate 2nd relay)
- 3 Ventilation / Heating (2 relays)
- 4 Double ventilation (2 relays)
- 5 Double heating (2 relays)
- Comparison function (1 or 2 external sensors required). Compares the readings from the external sensor and the internal sensor in order to start up a fan or a heating element
- 6
- 7 Readings of max./min. temperature.


The thermostat automatically detects any connected sensors.

Load (2) = fan/resistance/alarm

Load (1) = fan/resistance Load (2) = fan/resistance/alarm

Thermal control Electronic hygrotherm with LCD screen

- Electronic temperature and humidity controller.
 Input voltages: 9-30 V, 110-127 V and 220-240 V.
- Hygrotherm with 2 independent switching relays (ventilation / heating function).
- Thermostat precision: +/-1.5 °C.
- Hygrostat precision: +/-5% RH, relative humidity.
- Option of installing external PTC sensors, ref. NSYCCAST, for remote reading . (L = 3 m).
- PC plastic material, self-extinguishing according to standard UL94 V0.
 Option of displaying the temperature in degrees Celsius °C or Fahrenheit °F.

Display	Voltage	Type of current	Max. command intensity	Reference
°C or °F % RH	9-30 V	AC DC	8 (5) A 230 V AC /	NSYCCOHYT30VID
	110-127 V	AC	5 A 30 V DC	NSYCCOHYT120VID
	220-240 V			NSYCCOHYT230VID

Technical features		
Operating temperature	0 °C+50 °C	
Temperature setting range	+5 °C+50 °C	
Humidity setting range	20%80%	
RH hysteresis	3%	
Connection	2×2.5 mm² (input voltage) + 2 relays (2 \times 2.5 mm² + 2 \times 2.5 mm²)	
Contact	Free with zero potential	
Mounting	4 different methods: by DIN rail, Spacial SF profile, on VDI cross-rail or on mounting plate	
Enclosure	UL94-V0 plastic, light grey	
Certification	UL / UR	

Operating modes

Mode 1	Relay 1	Relay 2
Controlled device	Fan	Resistance heater
Measured variables	Temperature	Temp. (T) and humidity (RH)
Control type	Avoid high temperatures	Avoid low temperatures

Mode 2	Relay 1	Relay 2
Controlled device	Resistance heater	Alarm by switching
Measured variables	Control of the dew point	Temperature and humidity
Control type	Avoid high humidity	High humidity or
Control type	Avoid high humidity	temperature alert

Mode 3	Relay 1	Relay 2
Controlled device	Fan	Resistance heater
Measured variables	External temperature - Internal temperature*	Temperature (T) and humidity (RH)
Control type	Heating by ventilation	Avoid low temperatures

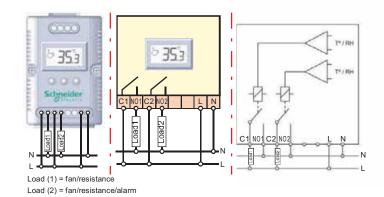
*Comparison mode in relay 2: an external sensor is required for the comparison function (Text - Tint). Example of mode 3: Decides whether the external temperature is favourable and controls the ventilation (Relay 1) or heating (Relay 2).

Advantage of mode 3: Energy efficiency. Option of efficiently heating the enclosure by ventilation (using hot external air) before bringing the resistance heater into operation. The thermostat automatically detects any connected sensors.

Thermal control Electronic hygrostat with LCD screen

- Electronic humidity controller.

- Input voltages: 110-240 V.
 Precision: +/- 5% RH, relative humidity.
 Hygrostat with 2 independent switching relays (ventilation / heating function).
 PC plastic material, self-extinguishing according to standard UL94 V0.
 2 operating modes for RH %: relative humidity control and dew point control.


Display	Voltage	Type of current	Max. command intensity	Reference
% RH	110-240 V	AC	8 (5) A 230 V AC / 5 A 30 V DC	NSYCCOHY230VID

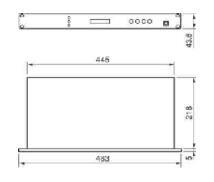
Technical features		
Humidity setting range	20%80%	
RH hysteresis	3%	
Internal sensor element	Internal humidity sensor	
Connection	2 $ imes$ 2.5 mm ² (input voltage) + 1 relay (2 $ imes$ 2.5 mm ²)	
Contact	Free with zero potential	
Mounting	4 different methods: by DIN rail, Spacial SF profile, on VDI cross-rail or on mounting plate	
Enclosure UL94-V0 plastic, light grey		
Certification	UL/UR	

Operating modes

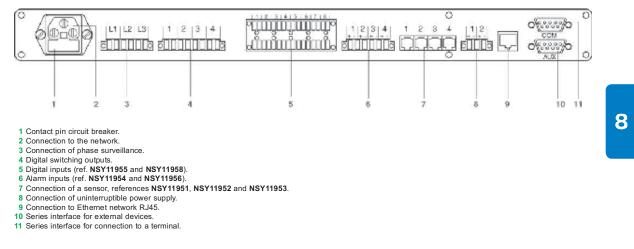
Mode 1	Relay 1	Relay 2
Controlled device	Resistance	-
Measured variables	Humidity	-
Control type Dehumidify RH (%)		-

Mode 2	Relay 1	Relay 2
Controlled device	Resistance	Alarm by switching or resistance
Measured variables	Humidity	Humidity
Control type	Dehumidify RH (%)	High humidity warning

Thermal control



- The enclosure monitor checks and protects all the equipment in the distribution, network and server racks as well as their environment.
- Ambient parameters and operating states can be measured using various sensors and several inputs.
- Signalling and display: on the unit, serial interface, Ethernet network.
- Digital inputs and switching outputs enable permanent monitoring and adapted actions.


Reference
NSY11950

Possibilities for connection to the enclosure monitor:

- 4 sensors ref. NSY11951, NSY11952 and/or NSY11953.
- 4 sensors ref. NSY11954 or NSY11956.
- 8 insulated digital inputs (free potential).
- 2 digital inputs.
- 1 series input used for monitoring devices with a communication protocol.

Connections and cabling diagram

Thermal control

Door contact

- Monitors door access by means of a magnetic sensor that reacts to any material Nonitors door access by mean conducting magnetic flow.
 Length of cable supplied: 4 m.
 Maximum cable length: 20 m.
 Supplied with fixings.

Smoke detector

- Visible smoke detector with VdS approval for rapid fire detection, even with light
- smoke. • Usable in temperature range from -20 to +60 °C.
- Length of cable supplied: 4 m.
- Maximum cable length: 20 m.
- Supplied with fixings.

Vibration sensor

- Detects movements and vibrations of varying intensity.
- Adjustable sensitivity.
- Length of cable supplied: 4 m.
- Maximum cable length: 20 m.
- · Supplied with fixings.

Movement sensor

- Indicates movements in the area by infrared system.
- Adjustable sensitivity.
- Anti-sabotage protection
- Length of cable supplied: 4 m.
- Maximum cable length: 20 m.
- Supplied with fixings.

Thermal control Sensors

Water sensor

- Detects all liquids that conduct electricity.
 Sensor covered in araldite, 100% sealed.
 Usable in temperature range from -20 to +60 °C.
 Length of cable supplied: 5 m.
 Dimensions: 70 × 50 × 39 mm.

eference
SY11957

• Four lengths available: 5, 10, 15 and 20 metres. • RJ11 connections.

Extension cables • 4 strand cable for sensors.

Length (m)	Reference
5	NSY11959
10	NSY11960
15	NSY11961
20	NSY11962

Temperature sensor

- Temperature value range: 0° ... +60°.
 Measurement accuracy: ± 1 °C.
- Length of cable supplied: 4 m.
- Maximum cable length: 20 m.
- Supplied with fixings.

Humidity sensor

- Humidity value range: 10 ... 90% relative humidity between 0° and +60°.
 Measurement accuracy: ± 3% relative humidity.
- Length of cable supplied: 4 m.
- Maximum cable length: 20 m.
- · Supplied with fixings.

8/105 Schneider

Thermal control Sensors

Combined temperature/humidity sensor

- Combines temperature and air humidity sensor functions.
 Temperature value range: 0° ... +60°.
 Measurement accuracy: ± 1 °C.
 Humidity value range: 10 ... 90% relative humidity between 0° and +60°.
 Measurement accuracy: ± 3% relative humidity.
 Length of cable supplied: 4 m.
 Maximum cable length: 20 m.
 Supplied with fixings

- Supplied with fixings.

Selection tools

> www.schneider-electric.com

Our international site allows you to access all the Schneider Electric products in just two clicks with direct links to:

- A complete library of technical documents,
- catalogues, FAQs brochures, etc.
- Certificates.
- 2D & 3D drawings.
- Selection Guides from the e-catalogue.Product discovery sites.

You may also find illustrated overviews, news to which you can subscribe, a list of country contacts and more useful information.

Our software suite

>Spacial.pro

Spacial.pro allows you to make switchboard proposals based on the standard Spacial offer. A full project with several sets of switchboards is quoted in minutes, with automatic creation of the Bill of Material and 2D drawings for front/side views.

ProClima

>Spacial.ref

Thalassa.ref

Calculate the right choice for your thermal management requirements, according to the environment and the electrical/electronic devices installed inside the enclosure.

These digital rules allow you to select the best components from the current extensive product range without the risk of any mistakes, since product and accessory selection take place automatically, saving you time and money.

Thermal balance Thermal management system

The miniaturisation of components, the generalisation of electronics and the appearance of new electronically powered products have made temperature management into a need which must necessarily be considered when designing electrical and/or electronic switchboards, in the same way as the protection rating.

Reliability and the search for lower breakdown rates are two determining factors in process industries, where the cost per hour is extremely high. The smallest failure can instantly result in considerable losses. The service life of the components also depends on the temperature and humidity conditions inside the enclosure. The ideal values are +25...+35 °C for the temperature and 60 % for the relative humidity (RH).

The ideal values are +25...+35 °C for the temperature and 60 % for the relative humidity (RH). Various solutions to these problems have been put forward. They will be chosen according to environmental conditions, the type of components in the electrical switchboard, and their cost. In certain cases, all it takes it to oversize the enclosures or use fans. In other cases, when the temperature is higher, it becomes necessary to install air-water exchangers or air coolers operating according to the principle of refrigeration (cooling units). We offer you a range of solutions that adapt to every possible scenario: from the enclosure itself to ventilation systems, resistances or exchangers, and even cooling units.

Natural dissipation

Through the walls of the enclosure

The use of a larger enclosure can, in certain cases, solve your heating problem.

Airing

Natural ventilation

The addition of fresh air from the outside through ventilation louvres improves the dissipation of heat by natural convection. However, this solution can only be used to dissipate small power levels and in environments with a small amount of dust.

Ventilating

Circulation

Air circulation inside the enclosure with the help of a fan makes it possible to guarantee an even temperature, avoiding hot spots that can damage certain components.

Forced ventilation

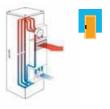
The fans are designed to evacuate a considerable amount of heat coming from the components of the electrical switchboards. The service life of the latter is considerably extended, thus guaranteeing the long life and correct operation of the installation.

The fans can only be used if the ambient temperature is at least 5 °C lower than the desired temperature inside the enclosure.

They offer an efficient solution, one that is easy to implement and maintain, which is also inexpensive, to the problem of temperature increases in the electrical switchboards. Thanks to their standard IP 54 (IP 55 with accessories) they are suitable for use in industrial and tertiary sectors.

Heating

Resistance heaters


Resistance heaters can be used for two reasons:

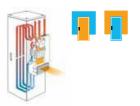
- To reheat the electrical switchboard when the ambient temperature is too low for the correct operation of the components.
- To prevent the formation of condensation.

The second phenomenon can cause short-circuits, premature oxidation of the contacts, corrosion of metal parts and, in particular, of the enclosure, a considerable reduction in the service life of the electrical and electronic components. Condensation occurs when the temperature suddenly drops below the dew point temperature. To avoid this, it is simply necessary to maintain the temperature inside the enclosure at a few degrees above the ambient temperature of the environment. Thanks to their design, the heaters encourage natural convection and guarantee quick and even heating within the enclosure.

Thermal balance Thermal management system

Cooling

Air-air exchangers


Air-air exchangers are devices that combine efficiency and simplicity. The hot air flows of the enclosure and the cold of the surrounding environment, created by two fans, circulate on either side of hermetic separation walls, preventing the penetration of dust or moisture in the enclosure. The hot air from the switchboard reheats these walls, which in turn are cooled by the fresh air from outside. The transfer always takes place from the hotter side to the cooler side. This is why these devices can only be used if the ambient temperature is at least 5 °C lower than the desired temperature inside the enclosure.

The aluminium exchange cassette forms the core of the system. This element can be cleaned easily by simply removing it. In addition, the permanent operation of the internal fan prevents the appearance of hot spots in the electrical switchboard. The temperature regulation system integrated in the unit turns the external circuit fan on and off.

Air-water exchangers

Air-water exchangers operate on the same principle as air-air exchangers. Fresh air from the outside is replaced with cold water supplied by a network installed on the industrial site. This change of fluid makes it possible to evacuate much larger amounts of heat and, possibly, to reduce the temperature in the enclosure below the temperature of the ambient air.

Temperature control in the enclosure is carried out by modulating the water flow. The water circuit is protected by a shut-off device: your electrical installation is safe.

Cooling units

Cooling units can be used in the harshest environments, where the temperature can reach 55 °C. These devices are especially recommended when the desired temperature inside the enclosure must be lower than the ambient temperature or when a large amount of heat needs to be evacuated. As in the case of the exchangers, they do not affect the IP of the switchboard.

The filter, placed at the inlet of the external air circuit, allows it to operate even when the ambient air is charged with dust or oil particles. Easily replaceable and quite inexpensive, this device guarantees the efficiency of the device throughout its service life. These devices control the temperature inside the enclosure and include an alarm function for signalling operational anomalies.

The ambient temperature is lower than the desired temperature inside the enclosure.

The ambient temperature is higher than the desired temperature inside the enclosure.

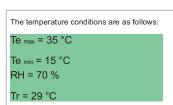
The ProClima calculation software, available on our webiste, is an indispensable tool for the selection of a thermal auxiliary.

Thermal balance Thermal management system

Method of determining the thermal solution

The heat balance, which consists of comparing the power released by the devices with the power exchanged spontaneously through the wall of the enclosure, allows us to calculate the internal temperature obtained in the enclosure, with no thermal accessories, and thus to determine whether it is necessary to install any, bearing in mind the desired internal and external temperatures. Below we have presented a simple method for implementing this choice.

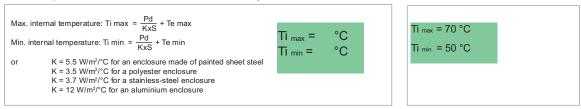
1 Characteristics of the enclosure


H = Height	W = Width) = Depth	Example Spacial reference NSYSF20840
Position of	Location according to IEC 890 ratio	Formula for calculating S (m ²)	H = 2000 W = 800
	Accessible from every side	S = $1.8 \times H \times (W + D) + 1.4 \times$	$W \times D$ D = 400 Installation method:
	Placed against a wall	S = 1.4 \times W \times (H + D) \times 1.8 \times	
	On the end when suited	S = 1.4 $ imes$ D $ imes$ (H + W) + 1.8 $ imes$	X W X H
	On the end when suited,	S = 1.4 $ imes$ H $ imes$ (W + D) + 1.4 $ imes$	X W X D
	placed against a wall		
	In the middle when suited	S = 1.8 $ imes$ W $ imes$ H + 1.4 $ imes$ W $ imes$	$D + D \times H$
	In the middle when suited,	S = 1.4 \times W \times (H + D) + D \times	н
	placed against a wall		
	In the middle when suited,	S = 1.4 \times W \times H + 0.7 \times W \times	D + D × H
	placed against a wall with the top of	overed S =	M ² S = 4.13 M ²

2 Thermal power dissipated by the operational components

Calculated as the sum of the power dissipated by each of the installed components. If these are not known, use the ProClima software and		Assume that the switchgear dissipates 800 W
page 8/115, which shows the average values.	Pd = W	Pd = 800 W

3 Characteristics of the environment air



4 Average desired internal temperatures

They are defined by the nature of the components and the characteristics of the environment air. Maximum internal temperature (maximum value between the dew point temperature and the minimum operating temperature of the devices) Ts max = °C Ts min = °C Ts min = °C

5 Final temperature inside the enclosure with no thermal system

8/110

Thermal balance

Thermal management system

6 Determining the type of thermal device and its power: Psyst

If Ts min < Ti min	If Ts min > Ti min	If Ts max < Ti max	If Ts max > Ti max
No need for a thermal system; a circulation fan may be used to even out the temperature.	Need for a thermal system: resistance heater 1/ Permanent operation of the switchboard Psyst = K × S (Ts _{min} – Te _{min}) – Pd	Need for a thermal system: ventilation, fan, exchanger, cooling unit.	No need for a thermal system; a circulation fan may be used to even out the temperature.
	2/ Discontinuous operation Psyst = K × S (Ts _{min} – Te _{min})	Psyst = Pd – K × S (Ts _{max} – Te _{max}) Psyst = 800 – 5.5 × 4.13 × (40 – 35) ~ 690 W	

C R R	Temperature conditions	Solution	Advantages	Constraints
C-RCULAT-RG	Avoid hot spots.	Install circulation fans in the enclosure.	Highly economical solution requiring no maintenance, easy to install; Installation IP conserved.	The amount of heat evacuated is relatively low.
		Oversize the enclosure or the wall-mounting enclosure.	Economical solution requiring no maintenance, easy to install; Installation IP conserved.	The amount of heat evacuated is relatively low, larger dimensions.
	Final temperature Ts max desired in the enclosure at least 5 °C higher than the ambient temperature	Install ventilation louvres.	Highly economical solution requiring no maintenance, easy to install.	The amount of heat evacuated is low, it depends on the layout of the components, reduced IP (entry of dust).
	Te max. Ts max ≥ Te max + 5 °C	Install fans for introducing fresh air. $D = \frac{Psyst}{(Ts max-Te max)} \times 3.1 \text{ m}^3/h$	Economical solution, easy to install; large amount of heat evacuated; possible temperature control.	Regular filter maintenance. IP slightly reduced.
C O O L - N G		Use an air-air exchanger. q = Psyst wk (Ts max-Te max)wk	Easy to install; IP conserved during installation; temperature control as standard; easy maintenance.	Regular filter maintenance.
	Final temperature Ts max desired in the enclosure lower than the ambient temperature Te max +5 °C.	Use a cooling unit.	Easy to install; allows the evacuation of large amounts of heat, even when the ambient temperature is high, IP conserved during installation, temperature control.	Regular filter maintenance, cannot be used beyond an ambient temperature of 55 °C.
	Ts max ≥Te max +5 °C	Use an air-water exchanger.	Easy to install; allows the evacuation of large amounts of heat, even when the ambient temperature is high, IP conserved during installation, temperature control, no filter to maintain.	Needs a water circuit; consumption if supplied by the water mains.
HEA	Outside temperature lower than the lowest acceptable ambient temperature for the switchgear.	Heat using a resistance heater.	Economical, reliable; see temperature in the table.	Energy consumption; space taken up in the enclosure.
H A A	Risk of condensation.	Heat using a resistance heater in order to maintain the temperature beyond the dew point temperature.	Economical, reliable; the humidity in the switchboard can be regulated.	Energy consumption; space taken up in the enclosure.

8/111

Software ProClima

New ProClima software

- Software package for calculating and selecting the thermal accessories required for enclosures containing electrical and electronic equipment.
 Performs the calculations described on pages 8/112 and 8/113, as well as the
- Performs the calculations described on pages 8/112 and 8/113, as well as the corrected surfaces, according to the dimensions of the enclosure and its position in relation to the walls.
- Available for download on our homepage.

Data entry

The following steps must be followed to conduct this study:

Enter the project and customer data (optional).

2 Enter the internal and external temperature data for the enclosure (compulsory).

3 Enter the electrical data for the installation (voltage, rating, etc.) (compulsory).

4

Determine the power dissipated by the electrical equipment inside the enclosure (compulsory).

- If this value is not known, the software can calculate it:
- Based on the electrical or electronic switchgear that make up the switchboard (type and number),
- Based on a temperature reading.

Software ProClima

Results

Summary of the heat balance

The software offers to print the project summary containing the calculation values, the results obtained and the thermal accessories recommended for maintaining the internal temperature of the enclosure in the specified conditions. In addition, the summary specifies the power, characteristics and reference of the device, as well as any related accessories.

5

Select the enclosure and the installation method (compulsory).

6

Select the thermal management system (fans, exchangers, etc.) (compulsory).

warm Internet of internet with the second state Network of	
 nam maranen	

View and print the project summary.

Example of calculation and selection

Data						
Enclosure c						
Height: Width:	2000 mm 800 mm					
Depth:	500 mm					
	laced on the wall					
• Material: Pa	iinted sheet-steel enclo	sure				
• Thermal por Pd: 950 W	wer dissipated by the	operational co	ompone	nts		
Information	on temperature and t	he environme	nt:			
Maximum de	sired temperature insid	e the enclosure	е	Te _{max} :	25 °	С
	sired temperature inside			Te :	25 °	С
	mperature dissipated in			Te:	35 °	С
Minimum ten	nperature dissipated in	the enclosure		Te _{min} :	25 °	С
Environment:	Low pollution and low	dust level				
Selection and o	calculation:					
The desired m	naximum temperature ir	side (Ts _{max}) the	e enclosu	ure is		
	han the maximum value					
	e to cool the enclos	ure using the	e filtered	l ventilat	tion	syster
Calculation of	the required fan:					
Usage formu						
Psis = Pd -	$ extsf{k} imes extsf{S} imes extsf{(Ts}_{ extsf{max}} - extsf{Te}_{ extsf{max}})$					
Flow = $f \times F$	Psis/ (Td _{max} – Te _{max})					
Flow = $f \times F$		the operation	al comp	onente		
Flow = f × F Pd: Therma	I power dissipated by				rd IE	C 890
Flow = f × F Pd: Therma S = 1.4 × W	I power dissipated by \times (H + D) + 1.8 \times D \times	I = 4.6 m ² . Acc	ording t	o standa		
Flow = f × F Pd: Therma S = 1.4 × W K = Constar	I power dissipated by \times (H + D) + 1.8 \times D \times Int defined by the mate	H = 4.6 m ² . Acc	ording to anufacto	o standa		
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}$ C for a solid sheet	H = 4.6 m ² . Acc rial used to m steel enclosure	ording to anufacto	o standa		
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a polyester e	I = 4.6 m ² . Acc rial used to m steel enclosure nclosure	ording to anufacto	o standa		
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}$ C for a solid sheet	I = 4.6 m ² . Acc rial used to m steel enclosure nclosure	ording to anufacto	o standa		
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a polyester e	H = 4.6 m ² . Acc rial used to m steel enclosure nclosure eel enclosure	e	o standa ure the e	nclo	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a polyester e $^{2} \times ^{\circ}C$ for a stainless-s ke the calculation, it is	H = 4.6 m ² . Acc rial used to m steel enclosure nclosure eel enclosure	e	o standa ure the e	nclo	sure
Flow = $f \times F$ Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above	I power dissipated by \times (H + D) + 1.8 \times D \times I at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a polyester e $^2 \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn	e e now the h	o standar ure the e	nclo	sure
Flow = $f \times F$ Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a polyester e $^{2} \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location:	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn	e e now the h	o standar ure the e	nclo	sure
Flow = $f \times F$ Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien	I power dissipated by \times (H + D) + 1.8 \times D \times I at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a polyester e $^2 \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le	e now the h	o standar ure the e	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to	I power dissipated by \times (H + D) + 1.8 \times D \times ht defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the heigh	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le	e now the h svel (valu	o standa ure the e neight abo ue)	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f	I power dissipated by \times (H + D) + 1.8 \times D \times I at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a polyester e $^2 \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m at relating to the height $^{\circ}$ 100 m f = 3.1	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le	e e how the h source (value 500 to 75 750 to 10	o standa ure the e neight abo ue) 50 m f = 3	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f	I power dissipated by × (H + D) + 1.8 × D × 1 at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the heigh 100 m f = 3.1 to 250 m f = 3.2	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le	e e how the h source (value 500 to 75 750 to 10	o standau ure the e neight abo ue) 50 m f = 3 00 m f = 3	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f	I power dissipated by \times (H + D) + 1.8 \times D \times I at defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m trelating to the heigh to 250 m f = 3.2 to 500 m f = 3.3	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le	e e how the h source (value 500 to 75 750 to 10	o standau ure the e neight abo ue) 50 m f = 3 00 m f = 3	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 tc 100 f 250 f	I power dissipated by \times (H + D) + 1.8 \times D \times I at defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m trelating to the heigh to 250 m f = 3.2 to 500 m f = 3.3	H = 4.6 m². Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le	e e how the h vel (valu 500 to 7 750 to 10	o standau ure the e neight abo ue) 50 m f = 3 00 m f = 3	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 tc 100 / 250 f Our example Psis = 950	I power dissipated by \times (H + D) + 1.8 \times D \times I at defined by the mate $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a solid sheet $^{2} \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the heigh 1 to 250 m f = 3.2 to 500 m f = 3.3 e:	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 7	e e how the h vel (valu 500 to 7 750 to 10	o standau ure the e neight abo ue) 50 m f = 3 00 m f = 3	ove s	sure
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fn	I power dissipated by x (H + D) + 1.8 × D × 1 at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a so	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 = 497 W : 244 m ³ /h ion table	e now the f vel (valu 500 to 75 750 to 10	o standau ure the e neight abo 1e) 50 m f = 3 00 m f = 3	ove s	sea lev
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fn	I power dissipated by × (H + D) + 1.8 × D × ht defined by the mate $^2 \times ^{\circ}$ C for a solid sheet $^2 \times ^{\circ}$ C for a solid sheet $^2 \times ^{\circ}$ C for a solid sheet $^2 \times ^{\circ}$ C for a stainless-s ke the calculation, it is ion location: sea level: 800 m tt relating to the height to 250 m f = 3.2 to 500 m f = 3.3 e: $-5.5 \times 4.6 \times (35 - 25)$ $= 3.5 \times 697 / (35 - 25)$	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 = 497 W : 244 m ³ /h ion table	e now the f vel (valu 500 to 75 750 to 10	o standau ure the e neight abo 1e) 50 m f = 3 00 m f = 3	ove s	sea lev
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficient 0 tc 100 / 250 / Our example Psis = 950 Flow rate = Selection fn 1 fan witt	I power dissipated by x (H + D) + 1.8 × D × 1 at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a so	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 = 497 W 244 m ³ /h ion table SYCVF300M2	e now the f vel (valu 500 to 75 750 to 10	o standau ure the e neight abo so m f = 3 00 m f = 3 1 grille w	ove s 3.4 3.5	sea lev
Flow = $f \times F$ Pd: Therma $S = 1.4 \times W$ K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fi 1 fan wit filter ref, flow rate	I power dissipated by × (H + D) + 1.8 × D × 1 at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the height to 250 m f = 3.2 to 500 m f = 3.2 to 500 m f = 3.3 e: - 5.5 × 4.6 × (35 - 25) = room the fan quick-select h standard filter ref. N NSYCAG223LPF + 1 e of 302 m ³ /h	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 3 4 4 4 5 7 7 9 4 9 4 9 7 7 9 4 9 7 7 9 4 9 7 7 9 7 7 9 7 7 7 7	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = $f \times F$ Pd: Therma $S = 1.4 \times W$ K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fi 1 fan wit filter ref, flow rate	I power dissipated by × (H + D) + 1.8 × D × 1 ht defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the heigh $^{\circ}000 \text{ m f} = 3.1$ to 250 m f = 3.2 to 500 m f = 3.3 e: $^{\circ}-5.5 \times 4.6 \times (35 - 25) =$ $^{\circ}3.5 \times 697 / (35 - 25) =$ com the fan quick-selec th standard filter ref. N NSYCAG223LPF + 1	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 3 4 4 4 5 7 7 9 4 9 4 9 7 7 9 4 9 7 7 9 4 9 7 7 9 7 7 9 7 7 7 7	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fr 1 fan wit filter ref. flow rate The minimit temperature	I power dissipated by × (H + D) + 1.8 × D × 1 at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a so	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 = 497 W 244 m ³ /h ion table SYCVF300M2 thermostat ref is lower than t	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fr 1 fan wit filter ref. flow rate The minimit temperature	I power dissipated by × (H + D) + 1.8 × D × 1 t defined by the mate 2 × °C for a solid sheet 2 × °C for a solid sheet $^$	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 = 497 W 244 m ³ /h ion table SYCVF300M2 thermostat ref is lower than t	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fn 1 fan wit filter ref. flow rate The minimutemperatur It is necess	I power dissipated by × (H + D) + 1.8 × D × 1 at defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a so	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 4 5 5 4 5 7 7 7 9 9 = 497 W 244 m ³ /h ion table 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = $f \times F$ Pd: Therma $S = 1.4 \times W$ K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 t 250 t Our example Psis = 950 Flow rate = Selection fi 1 fan wit filter ref. flow rate The minimutemperatur It is necess Calculation	I power dissipated by × (H + D) + 1.8 × D × 1 at defined by the mate $2 \times °C$ for a solid sheet $2 \times °C$ for a solid sheet $2 \times °C$ for a solid sheet $2 \times °C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the height 100 m f = 3.1 to 250 m f = 3.2 to 500 m f = 3.2 to 500 m f = 3.3 e: $-5.5 \times 4.6 \times (35 - 25) = 25$ $3.5 \times 697 / (35 - 25) = 25$ $3.5 \times 697 / (35 - 25) = 25$ $3.5 \times 697 / (35 - 25) = 25$ in the fan quick-selec the standard filter ref. N NSYCAG223LPF + 1 e of 302 m ³ /h um outside temperature te inside the enclosure. sary to install resistance of the useful resistance	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 4 5 5 4 5 7 7 7 9 9 = 497 W 244 m ³ /h ion table 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = $f \times F$ Pd: Therma $S = 1.4 \times W$ K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fn 1 fan wit filter ref. flow rate The minimutemperatur It is necess Calculation Usage form	I power dissipated by × (H + D) + 1.8 × D × 1 at defined by the mate $2 \times °C$ for a solid sheet $2 \times °C$ for a solid sheet $2 \times °C$ for a solid sheet $2 \times °C$ for a stainless-s ke the calculation, it is ion location: sea level: 800 m t relating to the height 100 m f = 3.1 to 250 m f = 3.2 to 500 m f = 3.2 to 500 m f = 3.3 e: $-5.5 \times 4.6 \times (35 - 25) = 25$ $3.5 \times 697 / (35 - 25) = 25$ $3.5 \times 697 / (35 - 25) = 25$ $3.5 \times 697 / (35 - 25) = 25$ in the fan quick-selec the standard filter ref. N NSYCAG223LPF + 1 e of 302 m ³ /h um outside temperature te inside the enclosure. sary to install resistance of the useful resistance	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 4 5 5 4 5 7 7 7 9 9 = 497 W 244 m ³ /h ion table 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = f × F Pd: Therma S = 1.4 × W K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fr 1 fan wit filter ref. flow rate The minimum temperatur It is necess Calculation W = k × S 2	I power dissipated by × (H + D) + 1.8 × D × 1 At defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a so	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 4 5 5 4 5 7 7 7 9 9 = 497 W 244 m ³ /h ion table 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev
Flow = $f \times F$ Pd: Therma $S = 1.4 \times W$ K = Constar K = 5.5 W/m K = 3.5 W/m K = 3.7 W/m In order to ma of the installat Height above f = Coefficien 0 to 100 f 250 f Our example Psis = 950 Flow rate = Selection fr 1 fan wit filter ref. flow rate The minimum temperatur It is necess Calculation W = k × S 3 Our example	I power dissipated by × (H + D) + 1.8 × D × 1 At defined by the mate $^2 \times ^{\circ}C$ for a solid sheet $^2 \times ^{\circ}C$ for a so	H = 4.6 m ² . Acc rial used to m steel enclosure eel enclosure necessary to kn t above sea le 2 2 4 5 5 4 5 7 7 7 9 9 = 497 W 244 m ³ /h ion table 5 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	e now the h source (value) 500 to 79 750 to 10 	o standau ure the e neight abo 100 m f = 3 100 m f = 4 100 m f = 4	ove s 3.4 3.5	sea lev

Help table to calculate corrected surfaces

H (mm) 300		Installation mode								
	W (mm)	D (mm)	1	2	3 📃	4 🗖	5	6 🗖	7 🗖	
	200	150	0.23	0.21	0.21	0.19	0.20	0.17	0.15	
300	250	150	0.28	0.24	0.25	0.22	0.23	0.20	0.18	
300	300	150	0.31	0.27	0.29	0.25	0.27	0.23	0.20	
300	300	200	0.35	0.32	0.33	0.29	0.31	0.27	0.23	
300	400	150	0.38	0.33	0.36	0.32	0.35	0.30	0.26	
300	400	200	0.41	0.39	0.41	0.36	0.39	0.34	0.28	
400	300	150	0.39	0.34	0.36	0.32	0.34	0.29	0.26	
400	300	200	0.44	0.40	0.41	0.36	0.38	0.33	0.29	
400	400	200	0.54	0.48	0.51	0.45	0.48	0.42	0.36	
400	600	200	0.74	0.65	0.71	0.62	0.68	0.58	0.50	
400	600	250 200	0.82	0.73	0.78	0.69	0.74	0.65	0.54	
500	300		0.53	0.47	0.49	0.43	0.45	0.39	0.35	
500 500	400 400	200 250	0.65	0.57 0.65	0.61 0.68	0.53	0.57	0.49 0.55	0.44	
500	400 500	200	0.73	0.65	0.68	0.60	0.63	0.55	0.48	
500	500	200	0.85	0.87	0.73	0.63	0.89	0.59	0.52	
600	400	200	0.85	0.75	0.80	0.70	0.75	0.65	0.50	
600	400	250	0.78	0.88	0.71	0.62	0.00	0.63	0.51	
600	500	250	1.02	0.87	0.93	0.81	0.87	0.75	0.66	
600	600	200	1.02	0.89	0.98	0.84	0.94	0.79	0.00	
600	600	250	1.13	0.98	1.07	0.92	1.01	0.86	0.76	
600	600	300	1.22	1.08	1.15	1.01	1.08	0.94	0.81	
600	600	400	1.42	1.27	1.32	1.18	1.22	1.08	0.91	
600	800	300	1.52	1.33	1.45	1.26	1.38	1.19	1.02	
700	500	250	1.12	0.98	1.05	0.91	0.98	0.84	0.75	
800	600	200	1.32	1.13	1.26	1.06	1.19	1.00	0.92	
800	600	250	1.43	1.24	1.35	1.16	1.27	1.08	0.98	
800	600	300	1.55	1.36	1.45	1.26	1.36	1.16	1.04	
800	600	400	1.78	1.58	1.65	1.46	1.52	1.33	1.16	
800	800	250	1.79	1.54	1.71	1.46	1.63	1.38	1.24	
800	800	300	1.92	1.66	1.82	1.57	1.73	1.47	1.30	
800	1000	300	2.29	1.97	2.20	1.88	2.10	1.78	1.57	
800	1200	300	2.50	2.28	2.57	2.18	2.47	2.09	1.84	
1000	600	250	1.74	1.50	1.64	1.40	1.54	1.30	1.19	
1000	600	300	2.04	1.63	1.75	1.51	1.63	1.39	1.27	
1000	600	400	2.14	1.90	1.98	1.74	1.82	1.58	1.41	
1000	800	250	2.17	1.85	2.07	1.75	1.97	1.65	1.51	
1000	800	300	2.32	2.00	2.20	1.88	2.08	1.76	1.59	
1000	800	400 300	2.61	2.29	2.45 2.64	2.13 2.24	2.29	1.97	1.74	
1000	1000		2.76	2.36			2.52	2.12	1.91	
1000 1000	1200 1200	300 400	3.20 3.44	2.72 3.07	3.08 3.39	2.60 2.91	2.96 3.23	2.48 2.75	2.23 2.42	
1200	600	300	2.45	3.07 1.91	2.05	1.76	3.23 1.91	1.62	1.49	
1200	600	400	2.83	2.21	2.30	2.02	2.11	1.82	1.49	
1200	800	300	2.71	2.33	2.57	2.18	2.42	2.04	1.87	
1200	800	400	3.04	2.66	2.85	2.46	2.66	2.27	2.05	
1200	1000	300	3.23	2.75	3.08	2.60	2.94	2.46	2.05	
	1000	400	3.70	3.10	3.39	2.91	3.20	2.72	2.23	
	1200	300	3.74	3.17	3.60	3.02	3.46	2.88	2.63	
1200 1200 1200			3.86	3.14	3.53	2.97	3.36			

7 In the middle when suited, placed against a wall, closed covered top

The surfaces are given in m².

to save time and find the best solution!

Help table to calculate corrected surfaces

THALASSA wall-mounting enclosures

н	w	D	Installation mode						
(mm)	(mm)	(mm)	1	2 🗖	3	4	5	6	7
310	215	160	0.26	0.23	0.24	0.21	0.22	0.19	0.17
307	255	164	0.29	0.26	0.27	0.24	0.25	0.22	0.19
430	330	200	0.50	0.45	0.47	0.41	0.43	0.38	0.33
530	430	200	0.72	0.63	0.68	0.59	0.64	0.55	0.49
645	435	250	0.95	0.84	0.88	0.77	0.82	0.71	0.63
745	535	300	1.34	1.19	1.26	1.10	1.17	1.01	0.89
845	635	300	1.69	1.47	1.59	1.37	1.49	1.27	1.14
1055	850	350	2.70	2.34	2.55	2.19	2.40	2.04	1.83

н	w	D	Installation mode						
(mm)	(mm)	(mm)	1 🛄	2 🗖	3	4	5	6	7
500	500	320	0.96	0.86	0.90	0.80	0.83	0.73	0.62
500	750	320	1.30	1.15	1.24	1.09	1.17	1.02	0.85
500	1000	320	1.64	1.44	1.57	1.37	1.51	1.31	1.08
500	1250	320	1.97	1.72	1.91	1.66	1.85	1.60	1.32
750	500	320	1.33	1.18	1.24	1.09	1.14	0.99	0.88
750	750	320	1.78	1.56	1.68	1.46	1.59	1.36	1.20
750	1000	320	2.23	1.93	2.13	1.83	2.04	1.74	1.51
750	1250	320	2.68	2.30	2.58	2.21	2.49	2.11	1.83
1000	500	320	1.70	1.50	1.57	1.37	1.44	1.24	1.13
1000	750	320	2.26	1.96	2.13	1.83	2.01	1.71	1.54
1000	1000	320	2.82	2.42	2.70	2.30	2.57	2.17	1.94
1000	1250	320	3.39	2.89	3.26	2.76	3.13	2.63	2.35
1250	500	320	2.07	1.82	1.91	1.66	1.75	1.50	1.39
1250	750	320	2.74	2.37	2.58	2.21	2.42	2.05	1.88
1250	1000	320	3.42	2.92	3.26	2.76	3.10	2.60	2.37
1250	1250	320	4.09	3.47	3.93	3.31	3.77	3.15	2.87
1500	500	320	2.44	2.14	2.25	1.95	2.05	1.75	1.64
1500	750	320	3.23	2.78	3.03	2.58	2.84	2.39	2.22
1500	1000	320	4.01	3.41	3.82	3.22	3.63	3.03	2.80
1500	1250	320	4.80	4.05	4.61	3.86	4.42	3.67	3.39
500	500	420	1.12	1.02	1.04	0.94	0.95	0.85	0.71
500	750	420	1.49	1.34	1.41	1.26	1.33	1.18	0.96
500	1000	420	1.87	1.67	1.78	1.58	1.70	1.50	1.20
500	1250	420	2.24	1.99	2.15	1.90	2.07	1.82	1.45
750	500	420	1.54	1.39	1.41	1.26	1.28	1.13	0.99
750	750	420	2.02	1.80	1.89	1.67	1.77	1.54	1.32
750	1000	420	2.51	2.21	2.38	2.08	2.25	1.95	1.66
750	1250	420	2.99	2.61	2.86	2.49	2.74	2.36	2.00
1000	500	420	1.95	1.75	1.78	1.58	1.61	1.41	1.27
1000	750	420	2.55	2.25	2.38	2.08	2.21	1.91	1.69
1000	1000	420	3.14	2.74	2.98	2.58	2.81	2.41	2.11
1000	1250	420	3.74	3.24	3.57	3.07	3.41	2.91	2.54
1250	500	420	2.36	2.11	2.15	1.90	1.94	1.69	1.55
1250	750	420	3.07	2.70	2.86	2.49	2.65	2.28	2.06
1250	1000	420	3.78	3.28	3.57	3.07	3.36	2.86	2.57
1250	1250	420	4.49	3.87	4.28	3.66	4.07	3.45	3.08
1500	500	420	2.78	2.48	2.53	2.23	2.27	1.97	1.83
1500	750	420	3.60	3.15	3.35	2.90	3.10	2.65	2.43
1500	1000	420	4.42	3.82	4.17	3.57	3.92	3.32	3.02
1500	1250	420	5.24	4.49	4.99	4.24	4.74	3.99	3.62

8/116

Schneider

Help table to calculate corrected surfaces

H W D Installation mode											
(mm)	(mm)	(mm)	1	2	3	4	5	6	7		
1200	800	300	2.71	2.33	2.57	2.18	2.42	2.04	1.87		
1200	1000	300	3.23	2.75	3.08	2.60	2.94	2.46	2.25		
1200	1200	400	4.13	3.55	3.94	3.36	3.74	3.17	2.83		
1400	600	300	2.52	2.18	2.35	2.02	2.18	1.85	1.72		
1400	600	400	2.86	2.52	2.63	2.30	2.41	2.07	1.90		
1400	800	300	3.11	2.66	2.94	2.49	2.77	2.32	2.16		
1400	800	400	3.47	3.02	3.25	2.80	3.02	2.58	2.35		
1400	1000	400	4.09	3.53	3.86	3.30	3.64	3.08	2.80		
1400	1200	400	4.70	4.03	4.48	3.81	4.26	3.58	3.25		
1600	600	300	2.84	2.46	2.65	2.27	2.46	2.08	1.95		
1600	600	400	3.22	2.83	2.96	2.58	2.70	2.32	2.15		
1600	800	300	3.50	2.99	3.31	2.80	3.12	2.61	2.44		
1600	800	400	3.90	3.39	3.65	3.14	3.39	2.88	2.66		
1600	1000	300	4.16	3.52	3.97	3.33	3.78	3.14	2.93		
1600	1000	400	4.59	3.95	4.34	3.70	4.08	3.44	3.16		
1600	1200	300	4.82	4.06	4.63	3.86	4.44	3.67	3.42		
1600	1200	400	5.28	4.51	5.02	4.26	4.77	4.00	3.66		
1800	600	300	3.17	2.74	2.95	2.52	2.74	2.30	2.18		
1800	600	400	3.58	3.14	3.29	2.86	3.00	2.57	2.40		
1800	600	500	3.98	3.55	3.62	3.19	3.26	2.83	2.62		
1800	800	300	3.90	3.32	3.68	3.11	3.47	2.89	2.72		
1800	800	400	4.34	3.76	4.05	3.47	3.76	3.18	2.96		
1800	800	500	4.77	4.20	4.41	3.84	4.05	3.48	3.20		
1800	800	600	5.21	4.63	4.78	4.20	4.34	3.77	3.43		
1800	1000	400	5.10	4.38	4.81	4.09	4.52	3.80	3.52		
1800	1000	500	5.56	4.84	5.20	4.48	4.84	4.12	3.77		
1800	1200	400	5.86	4.99	5.57	4.70	5.28	4.42	4.08		
1800	1200	500	6.35	5.48	5.99	5.12	5.63	4.76	4.34		
1800	1600	400	7.38	6.22	7.09	5.94	6.80	5.65	5.20		
1800	1600	500	7.92	6.77	7.56	6.41	7.20	6.05	5.49		
2000	600	300	3.49	3.01	3.25	2.77	3.01	2.53	2.41		
2000	600	400	3.94	3.46	3.62	3.14	3.30	2.82	2.65		
2000	600	500	4.38	3.90	3.98	3.50	3.58	3.10	2.89		
2000	800	300	4.30	3.66	4.06	3.42	3.82	3.18	3.01		
2000	800	400	4.77	4.13	4.45	3.81	4.13	3.49	3.26		
2000	800	500	5.24	4.60	4.84	4.20	4.44	3.80	3.52		
2000	800	600	5.71	5.07	5.23	4.59	4.75	4.11	3.78		
2000	1000	400	5.60	4.80	5.28	4.48	4.96	4.16	3.88		
2000	1000	500	6.10	5.30	5.70	4.90	5.30	4.50	4.15		
2000	1200	400	6.43	5.47	6.11	5.15	5.79	4.83	4.50		
2000	1200	500	6.96	6.00	6.56	5.60	6.16	5.20	4.78		
2000	1200	600	7.49	6.53	7.01	6.05	6.53	5.57	5.06		
2000	1600	400	8.10	6.82	7.78	6.50	7.46	6.18	5.73		
2000	1600	500	8.68	7.40	8.28	7.00	7.88	6.60	6.04		
2000	1600	600	9.26	7.98	8.78	7.50	8.30	7.02	6.35		
	allation mode	000	0.20	1.00	0.70	1.00	0.00	1.02	0.00		
	Accessible from every side										
	ed against a wal										
3 On the end when suited 4 On the end when suited, placed against a wall											
	e middle when s										
In the middle when suited, placed against a wall In the middle when suited, placed against a wall In the middle when suited, placed against a wall, closed covered top								Use ProCli	ma		
						to save time and find					
				the best solution!							

Spacial floor-standing enclosures

The surfaces are given in m².

the best solution!

Help table to calculate corrected surfaces

н	w	D	Installation mode							
(mm)	(mm)	(mm)	1	2	3	4 🗔	5	6	7	
1200	600	400	2.50	2.21	2.30	2.02	2.11	1.82	1.66	
1200	600	600	3.10	2.81	2.81	2.52	2.52	2.23	1.98	
1200	800	400	3.04	2.66	2.85	2.46	2.66	2.27	2.05	
1200	800	600	3.70	3.31	3.41	3.02	3.12	2.74	2.40	
1400	600	400	2.86	2.52	2.63	2.30	2.41	2.07	1.90	
1400	800	400	3.47	3.02	3.25	2.80	3.02	2.58	2.35	
1600	600	600	3.96	3.58	3.58	3.19	3.19	2.81	2.56	
1600	600	800	4.70	4.32	4.19	3.81	3.68	3.30	2.96	
1600	800	600	4.70	4.19	4.32	3.81	3.94	3.42	3.09	
1600	800	800	5.50	4.99	4.99	4.48	4.48	3.97	3.52	
1800	400	400	2.82	2.53	2.53	2.24	2.24	1.95	1.84	
1800	400	500	3.20	2.91	2.84	2.55	2.48	2.19	2.05	
1800	400	600	3.58	3.29	3.14	2.86	2.71	2.42	2.26	
1800	600	400	3.58	3.14	3.29	2.86	3.00	2.57	2.40	
1800	600	500	3.98	3.55	3.62	3.19	3.26	2.83	2.62	
1800	600	600	4.39	3.96	3.96	3.53	3.53	3.10	2.84	
1800	600	800	5.21	4.78	4.63	4.20	4.06	3.62	3.29	
1800	800	400	4.34	3.76	4.05	3.47	3.76	3.18	2.96	
1800	800	500	4.77	4.20	4.41	3.84	4.05	3.48	3.20	
1800	800	600	5.21	4.63	4.78	4.20	4.34	3.77	3.43	
1800	1000	400	5.10	4.38	4.81	4.09	4.52	3.80	3.52	
1800	1000	500	5.56	4.84	5.20	4.48	4.84	4.12	3.77	
1800	1000	600	6.02	5.30	5.59	4.87	5.16	4.44	4.02	
1800	1200	400	5.86	4.99	5.57	4.70	5.28	4.42	4.08	
1800	1200	500	6.35	5.48	5,99	5.12	5.63	4.76	4.34	
1800	1200	600	6.84	5.98	6.41	5.54	5.98	5.11	4.61	
2000	300	500	3.09	2.85	2.69	2.45	2.29	2.05	1.95	
2000	300	600	3.49	3.25	3.01	2.77	2.53	2.29	2.17	
2000	400	400	3.10	2.78	2.78	2.46	2.46	2.14	2.03	
2000	400	500	3.52	3.20	3.12	2.80	2.72	2.40	2.26	
2000	400	600	3.94	3.62	3.46	3.14	2.98	2.66	2.49	
2000	400	800	4.77	4.45	4.13	3.81	3.49	3.17	2.94	
2000	600	400	3.94	3.46	3.62	3.14	3.30	2.82	2.65	
2000	600	500	4.38	3.90	3.98	3.50	3.58	3.10	2.89	
2000	600	600	4.82	4.34	4.34	3.86	3.86	3.38	3.13	
2000	600	800	5.71	5.23	5.07	4.59	4.43	3.95	3.62	
2000	800	400	4.77	4.13	4.45	3.81	4.13	3.49	3.26	
2000	800	500	5.24	4.60	4.84	4.20	4.44	3.80	3.52	
2000	800	600	5.71	5.07	5.23	4.59	4.75	4.11	3.78	
2000	800	800	6.66	6.02	6.02	5.38	5.38	4.74	4.29	
2000	1000	400	5.60	4.80	5.28	4.48	4.96	4.16	3.88	
2000	1000	500	6.10	5.30	5.70	4.90	5.30	4.50	4.15	
2000	1000	600	6.60	5.80	6.12	5.32	5.64	4.84	4.42	
2000	1000	800	7.60	6.80	6.96	6.16	6.32	5.52	4.96	
2000	1200	400	6.43	5.47	6.11	5.15	5.79	4.83	4.50	
2000	1200	500	6.96	6.00	6.56	5.60	6.16	5.20	4.78	
2000	1200	600	7.49	6.53	7.01	6.05	6.53	5.57	5.06	
2000	1200	800	8.54	7.58	7.90	6.94	7.26	6.30	5.63	
2000	1600	400	8.10	6.82	7.78	6.50	7.46	6.18	5.73	
2000	1600	500	8.68	7.40	8.28	7.00	7.88	6.60	6.04	
2000	1600	600	9.26	7.98	8.78	7.50	8.30	7.02	6.35	
2200	400	600	4.30	3.94	3.77	3.42	3.24	2.89	2.72	
2200	600	600	5.26	4.73	4.73	4.20	4.20	3.67	3.42	
2200	600	800	6.22	5.69	5.51	4.98	4.81	4.28	3.94	
2200	800	600	6.22	5.51	5.69	4.98	5.16	4.46	4.12	
2200	800	800	7.23	6.53	6.53	5.82	5.82	5.12	4.67	
2200	1000	600	7.18	6.30	6.65	5.77	6.12	5.24	4.82	
2200	1200	600	8.14	7.08	7.61	6.55	7.08	6.02	5.52	
2200	1200	800	9.26	8.21	8.56	7.50	7.86	6.80	6.13	

Spacial suitable enclosures

Selection tools

> www.schneider-electric.com

Our international site allows you to access all the Schneider Electric products in just two clicks with direct links to:

- A complete library of technical documents,
- catalogues, FAQs brochures, etc.
- Certificates.
- 2D & 3D drawings.
- Selection Guides from the e-catalogue.Product discovery sites.

You may also find illustrated overviews, news to which you can subscribe, a list of country contacts and more useful information.

Our software suite

>Spacial.pro

Spacial.pro allows you to make switchboard proposals based on the standard Spacial offer. A full project with several sets of switchboards is quoted in minutes, with automatic creation of the Bill of Material and 2D drawings for front/side views.

ProClima

>Spacial.ref

Thalassa.ref

Calculate the right choice for your thermal management requirements, according to the environment and the electrical/electronic devices installed inside the enclosure.

These digital rules allow you to select the best components from the current extensive product range without the risk of any mistakes, since product and accessory selection take place automatically, saving you time and money.

